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ABSTRACT
The objective of this paper is to investigate uncertainties sur-
rounding relationships between spatial autocorrelation (SA) and
the modifiable areal unit problem (MAUP) with an extensive simu-
lation experiment. Especially, this paper aims to explore how
differently the MAUP behaves for the level of SA focusing on
how the initial level of SA at the finest spatial scale makes a
significant difference to the MAUP effects on the sample statistics
such as means, variances, and Moran coefficients (MCs). The simu-
lation experiment utilizes a random spatial aggregation (RSA)
procedure and adopts Moran spatial eigenvectors to simulate
different SA levels. The main findings are as follows. First, there
are no substantive MAUP effects for means. However, the initial
level of SA plays a role for the zoning effect, especially when
extreme positive SA is present. Second, there is a clear and strong
scale effect for the variances. However, the initial SA level plays a
non-negligible role in how this scale effect deploys. Third, the
initial SA level plays a crucial role in the nature and extent of the
MAUP effects on MCs. A regression analysis confirms that the
initial SA level makes a substantial difference to the variability of
the MAUP effects.

ARTICLE HISTORY
Received 30 April 2018
Accepted 28 October 2018

KEYWORDS
Modifiable areal unit
problem (MAUP); spatial
autocorrelation; random
spatial aggregation; Moran
eigenvector spatial filtering

Introduction

The modifiable areal unit problem (MAUP) refers to the arbitrary nature of areal units
used in many spatial analyses, as well as the dependency of resulting statistical proper-
ties upon the spatial configuration of these areal units (Wong 2009a, Wong 2009b). A
configuration of areal units employed in a study is modifiable, or more accurately
substitutable, because many alternative surface partitionings exist, which are actually
available and/or theoretically viable. Although, in some situations, a specific areal unit
configuration is essential because of data availability only with that particular config-
uration, in other situations, one configuration can be preferred to others. In addition,
researchers may constitute a new configuration by aggregating pre-existing lower-level
areal units (i.e. smaller polygons). In any of the preceding cases, the arbitrary nature of
areal units is unavoidable such that no undeniable justification is possible regarding
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whether or not one spatial configuration is optimal for revealing an underlying spatial
process of a phenomenon under investigation. The twin analytical results aspect of the
MAUP, their dependency upon or sensitivity to a spatial configuration (Fotheringham
and Wong 1991, 1025), is more fundamental; a different spatial configuration often
yields significantly different statistical results. This uncertainty or instability of analytical
results (Fotheringham and Wong 1991, Manley 2014) implies that no conclusive statis-
tical statement is possible in the field of spatial analysis, especially when areal data are
used.

The vast majority of MAUP studies have been dedicated to exploring and analyzing
how significant the effects of the MAUP are, and in which ways they have an impact on
statistical results, not only for such basic descriptive statistics as means, variances, and
correlation coefficients but also for more sophisticated statistical techniques, such as
multiple regression and other types of spatial data analyses (e.g. Arbia and Petrarca,
2011, Fotheringham and Wong 1991, Amrhein 1995, Amrhein and Reynolds 1996, Wong
et al. 1999, Flowerdew et al. 2001, Dark and Bram 2007, Arbia and Petrarca 2011). Even
though a considerable amount of literature has accumulated especially since the mid-
1990s, our knowledge regarding both diagnosis and prognosis of the MAUP is still
limited. Indeed, an observation made about 35 years ago by one of the earlier pioneers
in the MAUP research is still valid (Openshaw, 1984, 6): ‘the MAUP is today one of the
most important unresolved problems left in spatial analysis.’ This sentiment is well
echoed by a recent review of the MAUP (Manley 2014, 1158); ‘we have neither a full
and detailed understanding of the problem nor the underlying causes.’ Hence, more
effort is necessary to develop a research framework to obtain more comprehensive, and
possibly more generalizable, results about how the MAUP effects behave.

Spatial autocorrelation (SA) is known to be a primary source of the MAUP (Openshaw
and Taylor 1979, Arbia 1989, Fotheringham and Wong 1991, Wong 1996), and efforts to
discover a relationship between the level of aggregation (AG) and the level of SA have
been made (Cliff and Ord 1981, Chou 1991, 1995, Qi and Wu 1996, Griffith et al. 2003).
Also, an impact of spatial aggregation on SA has been well investigated in geostatistics
(e.g. Journel and Huijbregts 1978). Especially, the effect of regularization on a variogram
(that is, how the overall structure of SA changes with spatial aggregation) is well
explored in the context of change of support. Recent studies, including Kyriakidis
(2004), Kyriakidis and Yoo (2005), and Yoo et al. (2010), explore impacts of spatial
aggregation in area-to-point spatial interpolation, focusing more on scale effects.
However, much of the interplay between these two concepts, once referred to as ‘two
very stubborn but pervasive problems in statistical analysis of spatial data’ (Wong 2009a,
120), still remains unknown. That is, SA is a source of uncertainty in the MAUP effects
that make it difficult to derive a generalizable behavior for the MAUP. In addition,
despite a consensus that a well-designed simulation is essential to a solid research
framework to evaluate the effects of the MAUP in a statistical analysis (Green and
Flowerdew 1996, 43), methodological advances have been meager. A better simulation
framework may require a well-founded random aggregation procedure (e.g. Flowerdew
et al. 2001), which is equipped with a reliable and efficient algorithm for aggregating
areal units for different levels of AG. It also should have a conceptually sound evaluation
scheme furnishing a simultaneous assessment of both the scale and zoning effects on
statistical properties.
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The objective of this paper is to investigate uncertainty surrounding relationships
between SA and the MAUP with an extensive simulation experiment. Although the
literature shows that they have an impact on each other, it is still uncertain how they
affect each other. For instance, Fotheringham and Wong (1991) show how the MAUP
can behave differently with four census variables that have various levels of SA, but it is
limited to only the empirical variables and is not enough to explore a wide spectrum of
uncertainty. Hence, this paper aims to explore how differently the MAUP behaves across
levels of SA. Specifically, the investigation focuses on whether the initial level of SA at
the finest spatial scale makes a substantial difference to the MAUP effects, the scale
effect arising from the level of aggregation, and/or the zoning effect arising from the
variety of zonations at the same AG level. That is, the level of SA at the finest resolution
is considered as a factor that increases uncertainty of the MAUP effects. The initial level
of SA as a potential factor on the MAUP is visualized and examined with a regression
analysis using the outcome of the simulation experiments, an assessment not appearing
in the literature. The impacts on three univariate summary statistics are focused on: i.e.
the mean, variance, and Moran coefficient (MC). In the simulation experiment, a random
spatial aggregation (RSA) procedure was devised and utilized to generate random
zonations by aggregating smaller areal units.

Spatial autocorrelation and the MAUP

Two major MAUP effects exist: scale and zoning (also referred to as zonation or
aggregation). Assuming that the overall MAUP effects occur in a spatial aggregation
process (the same as a spatial partitioning process in a theoretical sense) whereby ‘a
larger number of smaller areal units are grouped into a smaller number of larger areal
units’ (Amrhein 1995, 105), the two sub-effects are jointly responsible for the complete
process. The scale effect occurs because of differences in the number of areal units into
which a study region has been partitioned. In contrast, the zoning effect occurs exclu-
sively because of differences in how lower-level areal units are grouped into a particular
number of higher-level areal units. The importance of SA in MAUP studies, or the
interplay of these two concepts, is twofold. First, SA is a primary source of the MAUP.
Second, SA itself is subject to the MAUP effects.

Regarding the first aspect, Fotheringham and Wong (1991) and Wong (1996) explicitly
point out a direct link between the two, which was suggested earlier by Openshaw and
Taylor (1979). A smoothing process occurs when spatial aggregation proceeds, and is
responsible for a tendency of reduced variance and correlation. This explanation seems
to apply at least to the scale effect (Green and Flowerdew 1996, Wong 1996). As
adjacent areal units are aggregated to constitute a larger areal unit, their peculiarities
or heterogeneity are expected to be reduced, thus resulting in a reduction in variance
and correlation coefficients, assuming a relatively stable covariance (Fotheringham and
Wong 1991). Furthermore, Wong (1996) argues that the degree of susceptibility to the
MAUP effects could vary from one variable to another because they contain different
levels of SA, which may explain why succinct results from MAUP studies dealing with
statistical situations involving multiple variables are more difficult to obtain.

The zoning effect, even at some given spatial scale, also can lead to uncertainty or
instability in a spatial data analysis. As Openshaw (1984) points out, the zoning effect
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may be greater than the scale effect. Lee (2001) proposes a spatial smoothing scale,
which is subsequently named S, as an alternative univariate SA measure (Lee 2004, 2009,
2017). This particular measure is based on the concept that the SA level of a geographic
variable is directly associated with the amount of variance reduction attributable to
transforming a variable to a spatial lag vector or a spatial moving average vector. For
example, while the least variance reduction occurs when a variable has extreme positive
SA, the most variance reduction occurs when a variable has extreme negative SA (see
Figure 2 in Lee 2001). This correspondence implies that the zoning effect is closely
related to local SA contexts. That is, if a set of neighboring areal units with strong local
positive SA are aggregated into a larger areal unit, the aggregation makes no or little
contribution to variance reduction. In contrast, an aggregation of a set of neighboring
areal units with strong negative SA contributes to a larger variance reduction.

Regarding the second aspect, SA measures such as the MC are themselves subject to
the MAUP effects. Cliff and Ord (1981) report that there is a negative relation between
AG and SA levels, showing that the larger the size of areal units, the smaller the MC
value tends to be. Similarly, Chou (1991, 1995) discusses a possibly generalizable
relationship (a log-linear one) between map resolution and the MC, and Qi and Wu
(1996) also report the same observation form their analyses with landscape pattern data.
Similarly, Griffith et al. (2003) show that the SA level measured by the MC decreases as
the spatial resolution of areal units gets coarser, from block groups through counties to
states. Despite these observations of salient trends, little literature provides substantive
explanations for this situation.

The aforementioned smoothing process (i.e. variance reduction) proposition may
provide a possible primitive explanation for a relationship between AG and SA levels.
The variance reduction decreases the MC denominator value and, subsequently, results
in an increase in the MC value. Simultaneously, variance reduction tends to decrease the
spatial covariance value in the MC numerator, and subsequently also decreases the MC
value. Thus, the MC usually shrinks toward zero when the reduction of its numerator is
larger than the reduction of its denominator. Although this explanation is more directly
related to the scale effect, the same argument can be used for the zoning effect. That is,
different zonations trigger a different local SA heterogeneity that may lead to differences
in reduction of the numerator and the denominator values.

In addition, a worthwhile investigation would be to examine whether or not the
negative relationship between AG and SA levels can behave differently based on an
initial SA level. In other words, it is unclear whether or not a variable with a higher MC
value is more sensitive to the MAUP effects than one with a lower value when they are
aggregated. Although previous work (Chou 1991) claims that an initial SA level plays a
non-negligible role, this contention largely remains under-investigated. Specifically, how
and how much an initial SA level influences the MAUP effects, scale and/or zoning, has
received little attention.

Research design

This paper utilizes experimental simulations to elucidate the nature and extent of the
influence of the initial SA level on the MAUP effects. Changes in univariate statistical
values as well as SA measures of variables are monitored along with different AG levels
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and different zonations of spatial units. An RSA procedure was utilized to construct a
coarse (aggregated) spatial tessellations from fine spatial units: that is, aggregating small
polygons into fewer larger polygons at a coarser spatial resolution. The detailed proce-
dure of the RSA is as follows: suppose that n original areal units are to be aggregated
into m target areal units then

(1) A set of seed units (m) is randomly selected from the original areal units (n).
(2) In the first round, each seed unit, in a random order, annexes a randomly chosen

neighboring unit to construct a first-round zone. When a seed does not have any
available neighboring units, the seed unit itself becomes a final zone for the target
tessellation. For other first-round zones, the aggregation proceeds to the second round.

(3) In the second round, each of the first-round zones, in a random order, annexes
one of the remaining units (that are neither a seed unit nor an annexed unit in the
first round) that are contiguous to any of its participating subunits to construct a
second-round zone. If no neighboring unit is available for annexation for a first-
round zone because all neighboring units already are annexed into other first-
round zones, it becomes a final zone for the target tessellation. For other second-
round zones, the aggregation proceeds to the third round.

(4) This procedure continues to move to additional rounds until all areal units are
annexed to one of m target units.

The RSA imposes two restrictions on the random selection process for neighbors. First,
‘no aggregation’ is given as an option such that, for instance, when only one neighboring
unit is available for annexation, the probability of the neighboring unit being selected is not
1 but 1/2. This restriction should better ensure the nature of randomness for a spatial
aggregation. Second, from the second round on, a neighboring unit that is contiguous to
more subunits of a zone has a higher chance of being selected. For instance, when a zone
with two subunits has two candidates’ neighboring units for annexation, one neighbor that
is adjacent to both subunits has a higher chance of being selected than the other that is
adjacent to one of the two subunits; the former has a selection probability that is twice that
of the latter. This restriction helps avoid contorted zones (e.g. gerrymandering-type zones)
and enhances the compactness of resulting zones (Flowerdew et al. 2001).

The aggregation process begins with a regular tessellation of 1,024 squares (32-by-32),
which is the finest spatial resolution in this simulation (Figure 1(a)): see Boots and Tiefelsdorf
(2000) for a more detailed description. These squares are randomly aggregated into 10
different AG levels (i.e. coarser resolutions) with the rook-type spatial neighboring structure:
AG1 (896), AG2 (768), AG3 (640), AG4 (512), AG5 (384), AG6 (256), AG7 (128), AG8 (64), AG9
(32), and AG10 (16). Note that the numbers in the parentheses indicate the number of areal
units for a target (aggregated) tessellation. The regular square tessellation was chosen over
other types of regular tessellations (e.g. hexagons as seen in Figure 1(b)) because a regular
square tessellation, with a rook adjacency definition, allows a full and symmetric range of SA
from highly positive to equally highly negative (Boots and Tiefelsdorf 2000). For each AG level,
1,000 different sets of zonations are generated. The two different sources of variability for the
MAUP are incorporated in this simulation design: variability owing to the different AG levels (i.
e. the scale effect), and variability owing to the different zonations (i.e. the zoning effect).
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Spatially autocorrelated random variables were constructed with Moran eigenvectors,
which are fundamental components of the eigenvector spatial filtering methodology
(Griffith 1996, 2000, 2003, Tiefelsdorf and Griffith 2007). These eigenvectors provide a set
of orthogonal and uncorrelated vectors that portray distinct SA patterns. Importantly, their
corresponding eigenvalues essentially are MC values for them (Griffith 1996). Hence, they
provide a set of numerical values covering a full range of possible SA for the spatial
tessellation employed here, from extreme positive to extreme negative SA. To explore
different SA levels, nine spatial eigenvectors representing various SA levels were selected
from a total of 1,024 eigenvectors, which are extracted from a transformed spatial weights
matrix for the 1,024 squares forming the tessellation: SA1 (EV1, MC = 1.0206), SA2 (EV91,
MC = 0.7471), SA3 (EV192, MC = 0.5037), SA4 (EV317, MC = 0.2487), SA5 (EV529,
MC = −0.0070), SA6 (EV707, MC = −0.2487), SA7 (EV832, MC = −0.5037), SA8 (EV933,
MC = −0.7471), and SA9 (EV1024, MC = −1.0276). These nine eigenvectors were selected
using approximately equal MC spacing (about 0.25), from extreme positive to extreme
negative SA, covering the entire feasible SA range.

These eigenvectors have the samemean of zero, and the same variance of 1/1023≈ 0.0010,
except for a few eigenvectors in themiddle of the spectrum,1which ensures a controlled initial
univariate condition. For each aggregated zonation, three summary statistics (i.e. the mean,
variance, and MC) are computed and recorded, which results in 90,000 means, variances, and
MCs (i.e. 10 AG levels times 1,000 zonations times nine SA levels). The behavior of the three
summary statistics is inspected to explore the way and the extent to which the initial SA level
contributes to the variability of the MAUP effects, scale and/or zoning. Finally, regression is
employed to numerically determine how much the summary statistics are influenced by the
effects of the MAUP at a given initial level of SA and at a given AG level.

For a sensitivity analysis, the same experiment is conducted for a regular hexagon
tessellation to check any potential impacts of a spatial tessellation type (Figure 1(b).
Empirical spatial tessellations (e.g. census units) tend to be somewhere between a
hexagon and a square tessellation. However, the spectrum of the eigenvalues extracted
from a spatial hexagon tessellation is not symmetric, unlike the one from a square
tessellation with the rook type spatial neighboring structure (Boots and Tiefelsdorf
2000). Some informative results are presented in the Appendix to this paper.

Figure 1. Two regular tessellations (n = 1,024): (a) Squares and (b) Hexagons.

1140 S.-I. LEE ET AL.



Results

This section presents the results of the simulation experiments. The first discussion
summarizes findings about the variability of the MAUP effects on the following three
summary statistics: the mean, variance, and MC. The second discussion presents the
results of regression analyses that were conducted to explore a potential systematic
relationship between the MAUP effects and AG and initial SA levels.

The MAUP effects on the means, variances, and MCs

For each summary statistic, nine sets of 10 boxplots are presented: each boxplot
visualizes the expectation and dispersion for 1,000 zonations for each of the 10 AG
levels; sets of these 10 boxplots are drawn for each of the nine SA levels. Figure 2 shows
the MAUP effects on the means. Except for SA1, the graphs have a similar pattern; the
means are consistently around zero across all AG levels (no or little scale effect) and are
compactly dispersed in a narrow range for each AG level (weak zoning effect). This
outcome tends to support the common belief that the MAUP does not have a significant
impact on means (Amrhein 1995). However, the result of SA1 does not support this
contention. Its pattern is quite exceptional; the dispersion steadily increases as the AG
level increases, which implies that an extremely high SA level seems to be largely
susceptible to the zoning effect, especially at high AG levels. A global SA pattern of
SA1, which has two spatial clusters of large and small values, may lead to some
aggregated units with extremely large or small means. An inspection of all the 1,024
SA levels (i.e. eigenvectors) reveals that this high variability is observed for the first 10
eigenvectors. The implication is that there is no (or at least a very weak) scale effect,
although an initial SA level plays a role in the deployment of the zoning effect on means
when extreme positive SA is present.

Figure 3 shows the MAUP effects on the variances. Except for the SA1 case, the
graphs show a similar trend that as the AG level increases, variance systematically
decreases, flattening out around zero, which may indicate a strong scale effect. The
range of the variances is relatively stable across the AG levels, which may indicate a
weak and constant zoning effect. This result tends to comply with the variance reduction
reported in the literature (Fotheringham and Wong 1991, Wong 1996). However, the
initial SA level plays a non-negligible role. First, as the initial SA level gets lower, the
flattening pattern appears at a lower AG level. Specifically, it occurs around AG9 for SA3–
SA4, AG8 for SA5–SA7, and AG7 for SA8–SA9. Second, the result of SA1 is different than
that for the other cases. The variances for the SA1 results do not decrease as sharply as
those for the other SA levels, and never flatten out. In addition, the dispersion of the
variances increases as the AG level increases, implying that an extremely high SA level
seems to be more susceptible to the zoning effect at higher AG levels. These results for
SA1 may originate from its spatial pattern with two clusters of large and small values
again, which leads to considerable variance remaining in its aggregated values. In sum,
the scale effect is larger than the zoning effect, and an initial SA level plays a non-
negligible role in the deployment of both effects.

Figure 4 shows the MAUP effects on the observed MC values. The distinct patterns of
the nine graphs indicate that the initial SA level plays a pronounced role in the MAUP
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effects on MCs. In detail, four points are noteworthy. First, when an initial SA level is
high, as the AG level increases, the MC decreases constantly until it converges to around
−0.25. This convergence occurs early when the initial SA is low. In contrast, when the
initial SA is negative, the MC increases and converges to around −0.25. Second, after the
MC converges, it tends to oscillate, which can be easily observed in the results of SA6.
Third, variability tends to increase as the AG level increases, which is conspicuous in all
of the nine graphs. Fourth, the resulting patterns are not symmetric between positive
and negative SA. For example, the MC values for SA1 decrease slowly for AG1−AG6, and
then rapidly decrease beyond AG7. In contrast, the MC values for SA9 change more
rapidly for AG1−AG4. In addition, the zoning effect is much larger in SA9; its boxplots
show larger variances than those displayed by SA1. However, the results of SA5 and SA7
show a symmetric pattern, around the convergence point (−0.25), which is roughly the
initial SA level of SA6. These results provide counterexamples to a general statement in
the literature that the MC systematically decreases as the AG level increases (e.g. Chou

Figure 2. The MAUP effects on the means.
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1991, 1995, Qi and Wu 1996). It is only partially true for some AG levels (i.e. AG1–AG6)
coupled with higher positive SA levels (i.e. SA2–SA4).

Standardized MCs are also examined here, to control effects of the different expected
values and variances with different numbers of observations (Figure 5). Unlike in Figure
4, the prominence of the zoning effect at high AG levels disappears. That is, dispersions
are relatively constant across all AG levels. However, the scale effect is more clearly seen.
For higher positive SA levels, a standardized MC systematically decreases, flattening out
around zero, and for highly negative SA levels, a standardized MC steadily increases,
flattening out around zero. There is little or no scale effect exhibited in moderate to no
SA levels.

Formulating the MAUP effects

Figure 6 presents a pair of line graphs for the means: one for averages (the scale effect),
and the other for variances (the zoning effect) of the summary statistics from the 1,000

Figure 3. The MAUP effects on the variances.
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zonations for each combination of AG levels and initial SA levels. That is, each dot in
Figure 6 represents the average (a) and the variance (b) of a corresponding boxplot in
Figure 2; a total of 90 means and 90 variances are represented in Figure 6. Similarly,
Figures 7–9 present the same type of information, respectively, for the variances,
observed MCs, and standardized MCs.

Figure 6(a,b) indicates an absence of the scale effect and the zoning effect, if SA1 is
set aside. That is, the means are around zero in Figure 6(a), and the variances are close to
zero in Figure 6(b). Figure 7(a) supports the variance reduction proposition across all SA
levels. It also shows that variance more rapidly decreases when an initial SA level is low.
Figure 7(b) shows that the zoning effect occurs differently based on positive and
negative SA, excluding SA1. While positive SA results have large variances at high AG
levels (i.e. AG6–AG8), negative SA cases have large variances at low AG levels (i.e. AG3–
AG4). Figure 8(a) portrays the relationship between the AG and the SA levels. It shows
that their relationship is opposite between positive and negative SA for the initial SA
level. However, all lines, except SA1, converge as the AG level gets larger. The extent of

Figure 4. The MAUP effects on the observed MC.
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MC value changes from the initial MC at each AG level indicate that the scale effect is
stronger with a higher SA level, regardless of sign, and that the symmetry between
positive and negative SA is not obvious or weaker than one might expect. Figure 8(b)
shows that the AG level is the predominant factor explaining the zoning effect for the
MCs; that is, the MC varies more across 1,000 zonations when the AG level is high.
Although Figure 9(a) conveys almost the same information as Figure 8(a), Figure 9(b)
presents a potential impact of the sign of the initial SA level (i.e. positive and negative
SA) in the zoning effect for the standardized MCs.

A regression analysis was conducted between the MAUP effects and AG and initial SA
levels to explore a systematic relationship between them. Such a regression analysis
helps to formulate the nature and extent of MAUP effects when aggregation occurs for
an AG level and a SA level. Amrhein and Reynolds (1996, 1997) explored this relationship
in a similar way; their dependent variable was derived (i.e. not observed), which was
believed to capture the overall aggregation effect. The main goal of this regression
analysis was to examine whether or not the initial SA level leads to a significant

Figure 5. The MAUP effects on the standardized MC.
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difference in the MAUP effects. Two regression models were fitted with the data points
in Figures 6–9: one for the scale effect with the average data points in Figures 6(a)–9(a),
and the other for the zoning effect with the variance data points in Figures 6(b)–9(b).
The two major independent variables are the AG level (AG; the number of areal units)
and the initial SA level (SA; the observed MCs at the finest level). A dummy variable
(D_SA) was used to control the influence of positive or negative SA in the initial SA level:
1 for positive SA and 0 for negative SA. In addition, two statistical interaction variables,
AG*D_SA and SA*D_SA, also were included to examine whether or not the sign of SA
leads to a different relation for the two major independent variables

Table 1 summarizes the regression results. For the means, there are two notable
findings. First, no scale effect is observed. Second, the zoning effect is stronger when the
SA level is positive (the SA*D_SA is significant). Also, the AG*D_SA is significant at the 1%
level, although potentially affected by the results of SA1, which have increasing var-
iances as the AG level increases, unlike the other cases. Indeed, a supplementary
regression analysis without the SA1 results shows that the AG*D_SA is not significant,
but SA is significant at the 5% level.2 This supplemental regression result may indicate
that the initial SA level is significantly associated with the zoning effect (SA is significant
at the 5% level with a positive sign). That is, as the SA level increases, the zoning effect
gets larger.

For variance, there are three notable outcomes. First, the scale effect is obvious, with
significant coefficients for AG and SA. The AG level is a dominant factor (t-value of
18.077), indicating that variance decreases as the AG level increases (note that because
this variable is the number of areal units, its positive sign is indicative of a negative
relationship between the AG level and the variance). Second, the initial SA level plays a
significant but secondary role. With an AG level being constant, the variance gets lager
as the initial SA level becomes higher (t-value of 2.103 for SA). This relationship is
stronger for positive SA (t-value of 6.283 for SA*D_SA). Third, for the zoning effect, the

Figure 6. The scale effect (a) and the zoning effect (b) on the means by the initial level of spatial
autocorrelation.

1146 S.-I. LEE ET AL.



two interaction terms are highly significant, suggesting the importance of the differ-
ences between positive and negative SA. The significance of AG*D_SA with a negative
sign indicates that when SA is positive, the relationship is reversed such that the variance
increases as the AG level increases, which can be seen by the change of the AG
coefficient from 0.0074 for negative SA, to –0.0022 for positive SA levels. The significance
of the SA*D_SA, however, seems to be affected by the exceptional SA1 results because it
is not significant in the supplemental regression that excludes the SA1 results.

For the MCs, there are three notable outcomes. First, the AG level is a substantial
factor, with a significant coefficient at the 1% level (−0.0030). However, when AG*D_SA,
which is significant with a coefficient of 0.0097, is considered, its relationship gets
reversed for positive SA. Second, the initial SA level is also an important factor when it
is referenced by its sign. That is, the MC values are higher for higher initial SA levels, and
this relationship is stronger for positive SA (SA*D_SA is extremely significant with a t-
value of 9.975). Third, the AG level is the only significant factor for the zoning effect, but
the model explains almost half of the variability in the variance. The results of standar-
dized MCs show the same associations for the scale effect as for the observed MCs. In
contrast, both the AG level and the initial SA level are significant for the zoning effect;
furthermore, their relationships are significantly different for positive and negative SA
cases (D_SA is significant at the 1% level).

Conclusions

This paper investigates uncertainty in the MAUP effects focusing on SA using simulation
experiments. While most studies that have investigated an association between SA and the
MAUP utilize a limited set of empirical variables (e.g. Fotheringham and Wong 1991, Amrhein
and Reynolds 1997), this paper examines a wide range of SA in the experiments with Moran
spatial eigenvectors. Important findings of this paper include the following two outcomes.

Figure 7. The scale effect (a) and the zoning effect (b) on the variances by the initial level of spatial
autocorrelation.
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First, the simulation results support the contention that the initial SA level makes a marked
difference in the variability of theMAUP effects, and increases uncertainty in theMAUP effects.
That is, the nature and extent of the MAUP effects substantially vary due to the initial SA level
of a variable as spatial aggregation proceeds. This outcome means that the initial SA level is a
key factor for a plausible answer to the following question: by how much and how is SA
susceptible to the MAUP effects? Second, this paper shows that the scale effect in MCs occurs
with various tendencies (see Figure 8(a)), and the zoning effect is severe (see Figure 8(b)). The
convolution of these effects makes uncovering a systematic MAUP effect difficult. Notably,

Figure 8. The scale effect (a) and the zoning effect (b) on the observed MCs by the initial level of
spatial autocorrelation.

Figure 9. The scale effect (a) and the zoning effect (b) on the standardized MCs by the initial level of
spatial autocorrelation.
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this paper is the first report that presents a regression analysis result to confirm the impacts of
potential factors on the MAUP effects. In addition, this paper effectively visualizes the MAUP
effects with boxplots that graphically illustrate the impact of initial SA levels. Since datasets at
a fine spatial resolution increasingly have been available (e.g. remotely sensed images), and
often are processed for data reduction (i.e. aggregation), understanding how the MAUP
effects change in conjunction with initial SA levels is very important.

The findings of this paper provide encouraging evidence for further investigating the
MAUP effects in multivariate situations in future research. That is, the identification of the
initial SA level as a key factor and the development of the RSA procedure can furnish a sound
foundation to investigate the MAUP effects for multivariate statistics such as regression (e.g.
Amrhein and Reynolds 1997), which is still under investigated. Fotheringham and Wong
(1991) report that there is little connection between the MAUP effects and the SA degree in
multiple regression. Similarly, Flowerdew et al. (2001) conclude that the SA level is important
for correlation coefficients, but not for regression coefficients. Although some efforts have
been made to decipher this ambiguity (among others, Arbia 1989, Green and Flowerdew
1996, Flowerdew et al. 2001, Manley et al. 2006), no definitive answers have been provided.

This research also can be extended to examine MAUP effects in correlation coefficients.
Considerable efforts addressing this topic can be found in the literature (e.g. Openshaw and
Taylor 1979, Openshaw, 1984; Fotheringham and Wong 1991, Amrhein 1994, 1995); one
common finding is that the correlation level increases as the AG level increases. However,
many other aspects have yet to be investigated. First, the impacts of the initial level of
correlation on the MAUP effect are under-investigated. The MAUP effect drawn from an
experimental simulation with highly positive correlation might be substantially different from
one with no correlation, or highly negative correlation. Second, the initial level of bivariate SA
alsomay have a considerable impact on the variability ofMAUP effects. This taskmay require a
proper measure for the level of bivariate SA among possible options, including bivariate MC
and Lee’s L statistics (Lee 2001, 2004), particularly L* (Lee 2017). In addition, a much more
complicated simulation framework is needed to employ both the initial level of correlation
and the initial level of bivariate SA, which is beyond the scope of this research.

Notes

1. These eigenvectors with an MC of zero have non-zero means and less variance because they
are associated with an eigenvalue with multiplicity 32.

2. Results of the supplemental regression are not presented in this paper because the variable
significances are the same at the 5% level except highlighted variables in this text. These
variables are, for the zoning effect, (1) SA & SA*D_SA for the mean, (2) AG & SA*D_SA for the
variance, and (3) the two interaction terms for the standardized MCs.
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Appendix. A brief note on the results from the hexagon tessellations

Here, the outcome of the same experimental simulation done for the regular tessellation of 1,024
hexagons is presented. Since the spectrum of eigenvectors derived from the hexagon tessellations
are not symmetric, nine Moran eigenvectors are chosen with an equal spacing of about 0.20 across
the feasible range; SA1 (EV1, MC = 1.0306), SA2 (EV64, MC = 0.8000), SA3 (EV129, MC = 0.6035),
SA4 (EV205, MC = 0.3999), SA5 (EV296, MC = 0.1998), SA6 (EV409, MC = −0.0021), SA7 (EV566,
MC = −0.1995), SA8 (EV886, MC = −0.3998), and SA9 (EV1024, MC = −1.5186).

Figures A1 and A2 display the MAUP effects, respectively, for the variances and the standar-
dized MCs. Basically, there are no substantial differences; all the results are comparable; minor
differences are attributable solely to the differences in the eigenvector spectrums. Accordingly,
almost the same set of regression equations is obtained, which can be seen with Table A1.

Figure A1. The scale effect (a) and the zoning effect (b) on the variances by the initial level of spatial
autocorrelation for the hexagon tessellation.

Figure A2. The scale effect (a) and the zoning effect (b) on the standardized MCs by the initial level
of spatial autocorrelation for the hexagon tessellation.
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