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Definition

Spatial autocorrelation or spatial dependence can
be defined as a particular relationship between
the spatial proximity among observational units
and the numeric similarity among their values;
positive spatial autocorrelation refers to situations
in which the nearer the observational units, the
more similar their values (and vice versa for
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its negative counterpart). The presence of spa-
tial autocorrelation or dependence means that a
certain amount of information is shared and du-
plicated among neighboring locations, and thus,
an entire data set possesses a certain amount
of redundant information. This feature violates
the assumption of independent observations upon
which many standard statistical treatments are
predicated. This entry revolves around what hap-
pens to the nature and statistical significance of
correlation coefficients (e.g., Pearson’s r) when
spatial autocorrelation is present in both or either
of the two variables under investigation.

Historical Background

A lack of independence results in reduced de-
grees of freedom or effective sample size; the
greater the level of spatial autocorrelation, the
smaller the number of degrees of freedom or
effective sample size. This means that any type
of statistical test based on an original sample
size could be flawed in the presence of spatial
autocorrelation, thus heightening the probability
of committing a Type I error. Suppose that nŠ dif-
ferent map patterns are generated from n obser-
vations. Because the nŠ different map patterns are
identical in terms of sample mean and variance,
any statistical inferences based on these values
are identical. However, all of the map patterns
possess different degrees of freedom or effective
sample size, and thus nŠ different statistical esti-
mations should be obtained.

This type of problem occurs in situations deal-
ing with the correlation between two variables,
which has long been known (Bivand 1980; Grif-
fith 1980; Haining 1980; Richardson and Hémon
1981). The presence of spatial autocorrelation
in both or either of two variables under investi-
gation (i.e., bivariate spatial dependence) means
that when the nature of a bivariate association
at a location is known, one can guess the na-
ture of bivariate associations at nearby locations.
For example, if a location has a pair of higher-
than-average values for two variables, there is
a more-than-random chance to observe similar
pairs in nearby locations. This feature again vio-

lates the assumption of independent observations
and reduces the number of degrees of freedom
or effective sample size. In this context, standard
inferential tests tend to underestimate the true
sampling variance of the Pearson’s correlation
coefficient when positive spatial autocorrelation
is present in two variables under investigation,
resulting in a heightened chance of committing
a Type I error. One can generate nŠ different pairs
of spatial patterns from the original variables; all
of the pairs are identical in terms of Pearson’s cor-
relation coefficient, but they are different in terms
of the number of degrees of freedom or effective
sample size (Clifford and Richardson 1985; Clif-
ford et al. 1989; Haining 1991; Dutilleul 1993).
These notions can extend to situations dealing
with a pair of regression residuals (Tiefelsdorf
2001).

Two different approaches exist, addressing the
problem of spatial autocorrelation in bivariate
correlation. One is to seek to remedy the problem
by providing modified hypothesis testing proce-
dures taking the degree of spatial autocorrelation
into account (for a comprehensive review and
discussion, see Griffith and Paelinck 2011). The
other is to develop bivariate spatial autocorrela-
tion statistics to capture the degree of spatial co-
patterning between two map patterns and, fur-
ther, to propose some techniques for exploratory
spatial data analysis (ESDA) that allow the de-
tecting of bivariate spatial clusters (among others,
Lee 2001; Anselin et al. 2002; Lee 2012).

Scientific Fundamentals

For this section, I seek to conceptualize and
illustrate the concept of bivariate spatial depen-
dence with which the problems of correlation in
the presence of spatial autocorrelation are better
captured and tackled. For simplicity, subsequent
discussions about spatial autocorrelation tend to
refer to its positive component.

Nearly all studies about spatial autocorrela-
tion focus on univariate cases, i.e., on the sim-
ilarity/dissimilarity in nearby locations in a sin-
gle map pattern in terms of their values. How-
ever, correlation could be a legitimate statistical
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concept endemic to bivariate situations. A corre-
lation coefficient should gauge the nature (direc-
tion and magnitude) of the relationship between
two variables under investigation. Interestingly,
spatial autocorrelation can be viewed as a par-
ticular case of correlation, although only a single
variable is involved, which is why it is known as
autocorrelation. Because any type of correlation
should entail two vectors, another vector should
be spatially derived for spatial autocorrelation
to be a type of correlation. One of the most
commonly used concepts for this case is a spatial
lag vector, each element of which represents a
weighted mean of a location’s neighbors. In this
sense, spatial autocorrelation could be rephrased
as the correlation between one variable and its
spatial lag vector (Lee 2001).

But, what kinds of issues can arise when
we combine the two concepts, correlation and
spatial autocorrelation? This question might be
better captured by a rather new concept known
as bivariate spatial dependence, which is a sim-
ple extension of the general concept of spatial
dependence, and can be defined as “a particular
relationship between the spatial proximity among
observational units and the numeric similarity of
their bivariate associations” (Lee 2001, 2012).
In a bivariate situation, each observational unit
contains a pair of values, and the nature of the
bivariate association is assumed to be concep-
tually defined and numerically evaluated. If the
distribution of bivariate associations is not spa-
tially random, then we might legitimately state
that bivariate spatial dependence exists.

Before attempting to illustrate the concept
of bivariate spatial dependence, we begin with
univariate spatial dependence. Any local set com-
posed of a reference observational unit and its
neighbors takes on one of the following four
types of univariate spatial association:

H � QH H � QL L � QH L � QL (1)

Here, H denotes a value at a reference unit that is
greater than or equal to a threshold value (usually
the average) or a positive ´-score (original values
having the mean subtracted and then divided
by the standard deviation), and L denotes the

opposite. QH denotes a spatial lag that is greater
than or equal to the global average, and QL denotes
the opposite. The symbol ‘�’ denotes a univariate
horizontal relationship. The symbol “
” is intro-
duced here to make a clear distinction between
an original value at a location and a derived value
from a set of locations. This conceptualization is
the basis for the Moran’s I statistic.

If another concept (i.e., the spatial moving
average) is introduced, the situation changes sub-
stantively. Unlike the spatial lag, this concept
treats the reference unit itself as one of its neigh-
bors. Consider

QH� QL� (2)

Here, QH� and QL� denote the spatial moving av-
erages at each location. This conceptualization
forms the foundation for the Getis-Ord’s G�

i

statistic. The four types of univariate spatial as-
sociation listed in (1) reduce to the two values
in (2); H � QH and L � QL respectively are linked
to QH� and QL�, but H � QL and L � QH can
point either way, depending on the differences in
values and/or spatial weights. These two values
can be conceptualized as two different types of
univariate spatial clusters (Lee and Cho 2013).
This distinction between spatial association types
and spatial cluster types is critical because it
can represent the two contrasting perspectives of
spatial modeling and spatial exploration. This
distinction plays a pivotal role in addressing vari-
ous issues about multivariate spatial dependence,
a particular case of which is bivariate spatial
dependence.

We now move to bivariate situations in which
two variables, denoted by X and Y , are under
investigation. Each observational unit should take
on one of the following four types of bivariate
association (Lee 2012):

H
j

H

H
j

L

L
j

H

L
j

L
(3)

In this work, the symbol ‘j’ denotes a bivari-
ate vertical relationship at a location. Pearson’s
correlation coefficient is predicated upon this
conceptualization and is aspatial in nature in the
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sense that it does not consider the spatial distribu-
tion of the pair-wise local bivariate associations.

Suppose that a location has only one neighbor
at which the four different types of bivariate as-
sociation are possible, resulting in the following
16 different types of bivariate spatial association:

H � H
j j

H � H

H � H
j j

H � L

H � L
j j

H � H

H � L
j j

H � L

H � H
j j

L � H

H � H
j j

L � L

H � L
j j

L � H

H � L
j j

L � L
(4)

L � H
j j

H � H

L � H
j j

H � L

L � L
j j

H � H

L � L
j j

H � L

L � H
j j

L � H

L � H
j j

L � L

L � L
j j

L � H

L � L
j j

L � L

This association is both bivariate and spatial
because two pairs (bivariate) in adjacent locations
(spatial) are compared. The four main diagonal
elements clearly show positive bivariate spatial
dependence because exactly the same types of
pairs of bivariate association are connected. In
contrast, the four anti-diagonal elements can be
viewed as examples of negative bivariate spatial
dependence because rather different types of bi-
variate association are placed next to each other.

We next consider additional neighbors. If one
more neighbor is added, then we have 43 D 64

different types of bivariate spatial association for
each local set. The situation becomes more com-
plicated, although a decent chance still exists for
observational units to show perfect and positive
bivariate spatial dependence. Because areal units
in the real world (i.e., administrative units, school
districts, and other types of functional regions)
have been reported to have approximately six
contiguous neighbors on average, we consider
47 D 16;384 different types of bivariate spatial
associations at each location, and little chance ex-

ists of identifying those showing typical positive
bivariate spatial dependence.

We might be able to simplify the situation
by applying the notion of spatial lag as seen
in (1). Because each variable has four different
types of univariate spatial association at a loca-
tion, we always have only 16 different types of
bivariate spatial association (Lee 2012; Lee and
Cho 2013), no matter how many neighbors are
involved. Consider

H � QH
j j

H � QH

H � QH
j j

H � QL

H � QH
j j

L � QH

H � QH
j j

L � QL

H � QL
j j

H � QH

H � QL
j j

H � QL

H � QL
j j

L � QH

H � QL
j j

L � QL
(5)
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j j
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L � QH
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j j
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L � QL
j j

H � QH

L � QL
j j

H � QL

L � QL
j j

L � QH

L � QL
j j

L � QL

Each observational unit is assigned to one of
these 16 types in terms of local bivariate spa-
tial dependence. Certain interesting findings are
drawn from this illustration. First, the four cases
of perfect positive spatial dependence are ob-
served in the four corners, and their four neg-
ative counterparts are observed in the middle.
Second, the four cases in the main diagonal are
more closely associated with a positive aspatial
correlation, measured by Pearson’s correlation
coefficient, and the four cases in the anti-diagonal
are more strongly associated with a negative
aspatial correlation. This notion is not confined
to Pearson’s r , but can extend to other linear
correlation coefficients (see Griffith and Amrhein
1991).

By combining these two aspects, we can make
certain general statements. First, with a decent
level of positive Pearson’s r , the main diagonal
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cases are expected to be more observable than
the anti-diagonal cases. If the first and last cases
prevail for a local set, a positive bivariate spatial
dependence can be said to exist; if the second
and third cases prevail, a negative bivariate spatial
dependence can be said to exist. Second, with
a decent level of negative Pearson’s r , the anti-
diagonal cases are expected to be more observ-
able than the main diagonal counterparts. If the
first and last cases prevail for a local set, a
positive bivariate spatial dependence can be said
to exist; if the second and third cases prevail,
a negative bivariate spatial dependence can be
said to exist. In an overall sense, if no bivariate
spatial autocorrelation exists, the 16 different
types of bivariate spatial association (occurrences
of which are subordinate to the nature of the
global aspatial correlation) must be randomly
distributed; otherwise, they should show a certain
degree of spatial clustering.

These situations are further simplified by in-
corporating the notion of spatial moving average.
Because the four different types of univariate
spatial association defined in (1) reduce to the two
different values seen in (2), the 16 different types
of bivariate spatial association defined in (5) can
reduce to the following four:

QH�

j
QH�

QH�

j
QL�

QL�

j
QH�

QL�

j
QL�

(6)

These classifications can be referred to as four
different types of bivariate spatial clusters (Lee
and Cho 2013). The cases in the four corners in
(5) represent typical examples of the four types;
the others are classified into one of the four cases,
depending on differences in values and/or spatial
weights.

Key Applications

For this section, I focus on two strands of endeav-
ors that have been undertaken in this particular
field: one is to develop a means to remedy the
problem of correlation in the presence of bivari-
ate spatial dependence; the other is to devise

bivariate spatial autocorrelation statistics for the
bivariate counterparts of Moran’s I and Getis-
Ord’s G�

i statistics.
The test statistic for Pearson’s r is given by

t D r
p

n � 2
.p

1 � r2 (7)

with n�2 degrees of freedom when the following
two assumptions are satisfied: pairs of observa-
tions are drawn from the same, approximately
bivariate normal, distribution with constant ex-
pectation and finite variance (Haining 1991) and
observations of each variable are mutually inde-
pendent. This standard hypothesis testing proce-
dure for the correlation coefficient might not hold
for spatial data. The first assumption of a constant
mean structure cannot be assumed because of the
potential presence of a global trend. More impor-
tantly, the second assumption cannot be sustained
because of the usual presence of univariate spatial
autocorrelation for both or either of the variables
under investigation, which alludes to bivariate
spatial dependence.

The standard error of Pearson’s r , which is
also a part of (7), is given by

O�r D

r

1 � r2

n � 2
; (8)

where the denominator is associated with the
number of degrees of freedom. This standard er-
ror should be adjusted according to the degree of
spatial autocorrelation in the variables; it should
be larger when positive spatial autocorrelation
prevails (and vice versa for negative spatial au-
tocorrelation) (Haining 1991). This outcome can
be shown in (8); the lack of independence among
pairs of observations due to positive bivariate
spatial dependence reduces the number of degree
of freedom or effective sample size, thus making
the standard error larger.

Several approaches have been proposed
in order to remedy or at least alleviate
the problem of underestimation of the true
sampling variance that the standard inferential
test commits (Clifford and Richardson 1985;
Dutilleul 1993). In this entry, we focus solely
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on the Clifford-Richardson’s solution (for a
more comprehensive treatment, see Griffith and
Paelinck 2011). They redefine the equation for
the standard error by replacing n in (8) with
n0, their “effective sample size,” which arguably
refers to the number of equivalent, independent
samples:

O�r D

r

1 � r2

n0 � 2
: (9)

They also provide the equation for computing the
effective sample size as

n0 D 1 C n2
h

trace
�

ORX
ORY

�i�1

; (10)

where ORX and ORY are the estimated n � n spatial
autocorrelation matrices for the two variables and
the trace is a matrix operation which is the sum of
the diagonal elements. Because each diagonal el-
ement of matrix ORX

ORY can be seen as the relative
degree of spatial autocorrelation at each location
(1 for no spatial autocorrelation, more than 1 for

positive spatial autocorrelation), trace
�

ORX
ORY

�

captures the overall degree of bivariate spatial de-
pendence. If no spatial autocorrelation is present
for either of the two variables across all locations,
each diagonal element of matrix ORX

ORY is 1,

trace
�

ORX
ORY

�

D n, and thus n0 Š n (Haining

1991). If a positive bivariate spatial dependence
prevails, n0 is less than n, resulting in a reduced
effective sample size or a lesser number of de-
grees of freedom.

Suppose, for example, that we have 50 pairs
of observations and a Pearson’s r of 0.3. The test
statistic and the number of degrees of freedom ac-
cording to the standard hypothesis testing method
as shown in (7) are, respectively, 2.179 and 48,
which implies that r is statistically significant
.p D 0:0343/. If we have a positive bivariate
spatial autocorrelation of 2.0 on average across
locations, then we have t D 1:541 with the effec-
tive sample size of 26 .1 C 502

ı

100/ according
to (10), which is not statistically significant .p D

0:1365/. This Clifford-Richardson’s solution is
implemented in an R package named SpatialPack
(Vallejos et al. 2013).

Any bivariate spatial autocorrelation statistic
should capture the degree of spatial co-patterning
by measuring both pair-wise covariance and spa-
tial clustering (Lee 2001). One of the most impor-
tant considerations in determining how to mea-
sure bivariate spatial dependence might be the
fact that both Pearson’s r and Moran’s I are
cross-product statistics (Getis 1991), which take
the form of an average of the sum of products
of two vectors. Pearson’s r is defined as an
average of the cross-product of two standardized
vectors, zX and zY ; similarly, Moran’s I can be
defined as an average of the cross-product of two
standardized vectors, zX and QzX (a standardized
spatial lag vector), when a spatial weights matrix
is row standardized (Lee 2001):

r D

P

i .xi � Nx/ .yi � Ny/
q
P

i .xi � Nx/2
q
P

i .yi � Ny/2
(11)

D
1

n

X

i
´Xi

´Yi
; and

I D
n

P

i

P

j wij

P

i

P

j wij .xi � Nx/
�

xj � Nx
�

P

i .xi � Nx/2

D

P

i .xi � Nx/
P

j wij

�

xj � Nx
�

q
P

i .xi � Nx/2
q
P

i .xi � Nx/2

D
1

n

X

i
´Xi

Q́Xi
: (12)

Predicated upon all of the discussions about uni-
variate statistics for spatial autocorrelation, Lee
(2012) identifies six vectors that may play roles in
defining bivariate spatial autocorrelation statistics
conforming to the general form of cross-product
statistic: zX , QzX , and Qz�

X (a standardized spatial
moving average vector) for the X variable and
zY , QzY , and Qz�

Y for the Y variable. Using these
two sets of vectors, one can obtain various types
of bivariate spatial autocorrelation statistics. In
this entry, only the following two are discussed
(i.e., the cross-Moran or bivariate Moran statistic
denoted by CM and Lee’s L� statistic):
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CM D
n

P

i

P

j wij

P

i

P

j wij .xi � Nx/
�

yj � Ny
�

q
P

i .xi � Nx/2
q
P

i .yi � Ny/2
D

1

n

X

i
´Xi

Q́Yi
; and

L� D
n

P

i

�
P

j w�
ij

�2

P

i

h�
P

j w�
ij

�

xj � Nx
�
� �
P

j w�
ij

�

yj � Ny
�
�i

q
P

i .xi � Nx/2
q
P

i .yi � Ny/2
D

1

n

X

i
Q́�

Xi
Q́�

Yi
: (13)

Here, wij and w�
ij are elements from a zero

diagonal and nonzero diagonal spatial weights
matrix, respectively. The former statistic is one
derived from a multivariate spatial correlation
matrix proposed by Wartenberg (1985) and is a
simple extension of univariate Moran’s I , thus
gauging the correlation between one variable at
original locations and the other variable at the
neighboring locations (a spatial lag vector). In
contrast, the latter, which was proposed by Lee
(2001, 2004, 2009), is defined as the correlation
between one variable and the other variable’s
spatial moving average vectors. In comparison,
cross-Moran is more congruent with the con-
cept of cross-correlation, whereas Lee’s L� deals
more directly with the concept of co-patterning
by considering not only bivariate association at
the original locations but also their spatial associ-
ation with neighboring locations.

In examining the different advantages and
weaknesses, one can conclude that the bivariate
Moran’s statistic is more congruent with the

spatial modeling perspective, whereas Lee’s
statistic is more strongly associated with the
spatial exploration perspective. For example,
many situations might exist in which one should
postulate that a dependent variable at a given
set of locations is influenced by independent
variables in the neighboring locations. However,
if the main interest lies in measuring the spatial
similarity between the two map patterns, and
exploring and detecting possible bivariate spatial
clusters, L� might be the better option. In
addition, L� is much more congruent with what
is documented in (6). The higher the Pearson’s
aspatial correlation coefficient, and at the same
time the higher the level of spatial clustering of
bivariate association, the higher the L� statistic.
Certain exploratory spatial data analysis (ESDA)
techniques using Lee’s local L�

i (see Eq. 14)
can be developed like ones using cross-Moran
(Anselin et al. 2002), which is beyond the
scope of this entry (see Lee 2012; Lee and Cho
2013):

L�
i D

n2

P

i

�
P

j w�
ij

�2

�
P

j w�
ij

�

xj � Nx
�
� �
P

j w�
ij

�

yj � Ny
�
�

q
P

i .xi � Nx/2
q
P

i .yi � Ny/2
D Q́�

Xi
Q́�

Yi
(14)

The distributional properties for all bivariate
spatial autocorrelation statistics have been estab-
lished with the randomization assumption (Lee
2004, 2009), which might be crucial to develop
certain kinds of ESDA techniques, such as bivari-
ate cluster maps.

Future Directions

Bivariate spatial dependence points to situations
in which nearby observational units carry shared

information in terms of bivariate association,
thus violating the assumption of independent
sampling, and the shared information spuriously
strengthens (or weakens) the nature of correlation
between two variables under investigation,
making any conventional statistical inferences
or judgments considerably questionable.

The notion and procedure of correlation coef-
ficient decomposition based on the eigenvector
spatial filtering (ESF) technique (Griffith and
Paelinck 2011; Chun and Griffith 2013) provides
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an invaluable insight into our understanding of
correlation with spatial autocorrelation. It allows
an aspatial correlation coefficient to be decom-
posed into five sub-correlations between spatially
filtered variables, common spatial autocorrelation
components, unique spatial autocorrelation com-
ponents, one’s spatially filtered variable and the
other’s unique spatial autocorrelation component,
and one’s unique spatial autocorrelation compo-
nent and the other’s spatially filtered variable.

Bivariate spatial dependence or autocorrela-
tion is a special case of multivariate spatial de-
pendence or autocorrelation (Wartenberg 1985).
For example, “trivariate” spatial dependence is
simply defined as “a particular relationship be-
tween the spatial proximity among observational
units and the numeric similarity of their trivariate
associations.” Thus, we have 43 D 64 different
types of trivariate spatial association, similar to
(5), and 23 D 8 different types of trivariate
spatial clusters, similar to (6).

Because each pair of variables in a multivari-
ate data set can be viewed as a building block for
statistical treatments, the notion of bivariate spa-
tial dependence should have certain implications
in spatializing any form of multivariate statisti-
cal techniques, e.g., spatial principal components
analysis (e.g., Griffith 1988; Dray et al. 2008; Lee
and Cho 2014; Lee 2015) and spatial canonical
correlation analysis.
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Synonyms

Correlation Queries; Spatial Cone Tree; Spatial
Time Series

Definition

A spatial framework consists of a collection
of locations and a neighbor relationship. A time
series is a sequence of observations taken se-
quentially in time. A spatial time series dataset
is a collection of time series, each referencing
a location in a common spatial framework. For
example, the collection of global daily tempera-
ture measurements for the last 10 years is a spa-
tial time series dataset over a degree-by-degree
latitude-longitude grid spatial framework on the
surface of the Earth.

Correlation queries are the queries used for
finding collections, e.g. pairs, of highly correlated
time series in spatial time series data, which
might lead to find potential interactions and pat-
terns. A strongly correlated pair of time series
indicates potential movement in one series when
the other time series moves.

Historical Background

The massive amounts of data generated
by advanced data collecting tools, such as
satellites, sensors, mobile devices, and medical
instruments, offer an unprecedented opportunity
for researchers to discover these potential nuggets
of valuable information. However, correlation
queries are computationally expensive due to
large spatio-temporal frameworks containing
many locations and long time sequences.
Therefore, the development of efficient query
processing techniques is crucial for exploring
these datasets.

Previous work on query processing for time
series data has focused on dimensionality re-
duction followed by the use of low dimensional
indexing techniques in the transformed space.
Unfortunately, the efficiency of these approaches
deteriorates substantially when a small set of
dimensions cannot represent enough information
in the time series data. Many spatial time se-
ries datasets fall in this category. For example,
finding anomalies is more desirable than finding
well-known seasonal patterns in many applica-
tions. Therefore, the data used in anomaly detec-
tion is usually data whose seasonality has been
removed. However, after transformations (e.g.,
Fourier transformation) are applied to deseason-
alize the data, the power spectrum spreads out
over almost all dimensions. Furthermore, in most
spatial time series datasets, the number of spatial
locations is much greater than the length of the
time series. This makes it possible to improve the
performance of query processing of spatial time
series data by exploiting spatial proximity in the
design of access methods.

In this chapter, the spatial cone tree, an spatial
data structure for spatial time series data, is dis-
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