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This article establishes a unified randomization significance testing framework upon

which various local measures of spatial association are commonly predicated. The

generalized randomization approach presented is composed of two testing proce-

dures, the extended Mantel test and the generalized vector randomization test. These

two procedures employ different randomization assumptions, namely total and

conditional randomization, according to the way in which they incorporate local

measures. By properly specifying necessary matrices and vectors for a particular local

measure of spatial association under a particular randomization assumption, the

generalized randomization approach as a whole yields a reliable set of equations

for expected values and variances, which then is confirmed by a Monte Carlo

simulation utilizing random permutations.

Introduction

Local measures of spatial association have increasingly attracted considerable

attention in a variety of academic fields dealing with geographically referenced

data (for reviews, see Getis and Ord 1996; Fotheringham 1997; Unwin and Unwin

1998). Two sets of univariate measures have been proposed, Getis-Ord Gi and Gi
�

(Getis and Ord 1992; Ord and Getis 1995) and local Moran’s Ii and Geary’s ci

(Anselin 1995), and collectively lead to the advent of a general class of local

indicators of spatial association (LISA; Anselin 1995; Getis and Ord 1996). Boots

(2003) seeks to develop a local measure of spatial association for categorical data.

Significant efforts have been dedicated to provide viable significance testing

methods for the local measures (Anselin 1995; Ord and Getis 1995; Bao and

Henry 1996; Tiefelsdorf and Boots 1997; Sokal, Oden, and Thomson 1998;

Tiefelsdorf 2000; Leung, Mei, and Zhang 2003). There has also been a growing

interest in building a unified testing framework for both global and local measures
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(Tiefelsdorf and Boots 1997; Tiefelsdorf 1998, 2000; Boots and Tiefelsdorf 2000;

Ord and Getis 2001; Leung, Mei, and Zhang 2003).

Yet there remain many things to be done. First of all, it needs to be emphasized

that little attention has been given to the distributional properties of bivariate

measures of spatial association. Although a significance testing method for Cross-

Moran (Wartenberg 1985) was proposed in the early 1990s (Czaplewski and Reich

1993; Reich, Czaplewski, and Bechtold 1994), it has little been known to

geographers. Recently, Lee’s L as a new bivariate measure of spatial association

has been developed (Lee 2001a) and a significance testing method for the measure

has been proposed to provide the equations for the first two moments under the

randomization assumption (Lee 2004). The testing method can be regarded as a

significant progress because it is derived from a unified framework termed the

extended Mantel test, which can be applied to any global measures of spatial

association, whether univariate or bivariate, with any form of spatial weights

matrix, whether one with zero diagonal or nonzero diagonal. This kind of general-

ized approach has never been undertaken for bivariate local measures with few

exceptions; for example, Tiefelsdorf (unpublished data) provides a valuable dis-

cussion on how to specify the spatial association between two residual vectors and

proposes a set of new bivariate measures, global C and local Ci, along with a

significance testing method. Yet we still need a generalized approach that

inferential tests for different local measures, not only univariate but bivariate, are

commonly predicated on.

The main objective of this article is to present a generalized randomization

approach to local measures of spatial association in order to provide a reliable

foundation that significance tests for the local measures are commonly based on.

The generalized randomization approach proposed in this article is composed of

two testing procedures, the extended Mantel test initially proposed for global

measures of spatial association (Lee 2004) and the generalized vector randomization

test presented by Hubert (1984, 1987), similar to one utilized by Sokal, Oden, and

Thomson (1998). These two procedures are then assigned to two different rando-

mization assumptions, total randomization and conditional randomization (Anselin

1995; Sokal, Oden, and Thomson 1998), in consideration of the different natures of

various local measures. By properly specifying necessary matrices and vectors for a

particular local measure of spatial association under a particular randomization

assumption, the generalized randomization approach as a whole is expected to

yield a reliable set of equations for the expected value and variance by taking into

account all possible permutational situations occurring at and around a location.

Subsequently, I first conceptualize differences between total randomization

and conditional randomization and demonstrate that the different randomization

assumptions lead to different general forms of local measures resulting in different

distributional properties. Second, for each randomization assumption, equations for

the expected values and variances are presented for five different local measures of

spatial association. Third, I will demonstrate the exactness of the proposed methods
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by conducting a simulation based on random permutations with a hypothetical

data. Finally, I discuss some limitations of the randomization approach presented in

this article.

A generalized randomization approach

Cliff and Ord (1981) contend that the randomization approach is preferable either

(i) when we consider all possible permutations with a given data set or (ii) for any

nonnormal population. The first argument indicates that the distributional proper-

ties are derived under a nonfree sampling situation where there is assumed to be no

association between spatial locations and their numerical values. The second issue

is more crucial because the variance computed under the set of random permuta-

tions provides an unbiased estimator for the variance of a statistic for any under-

lying distribution (Cliff and Ord 1981, p. 42). In this sense, the extended Mantel test

(Lee 2004) provides a general foundation that global spatial association measures

are commonly predicated on. These situations are more complicated for local

measures of spatial association. Sokal, Oden, and Thomson (1998) argue that the

Mantel test cannot apply to local measures when what they call the ‘‘total

randomization’’ is intended, because different matrix settings for the Mantel test

yield the same sets of local statistics with different reference distributions. Subse-

quently, I will demonstrate that those different matrix settings are based on different

assumptions of randomization such that it is not unusual at all that different

sampling distributions are obtained.

Conceptualizing different randomization assumptions

A general form of global measures of spatial association has been defined as follows

(Anselin 1995; Lee 2004):

G ¼
X

i

X
j

pijqij ¼
X

i;j

P �Qð Þ ¼ tr PT Q
� �

¼ tr PQT
� �

ð1Þ

where pij and qij are elements, respectively, in a global spatial proximity matrix

P and a global numeric similarity matrix Q, and P �Q denotes pairwise products

between the two matrices. Accordingly, Anselin (1995, p. 98) formulates a general

form of local measures of spatial association as

Gi ¼
X

j

pijqij ð2Þ

Now, a local measure of spatial association at an ith location is computed by

summing up all the pairwise products between two vectors derived from the two

matrices for its global counterparts.

However, this specification is somewhat misleading. As Sokal, Oden, and

Thomson (1998) correctly point out, his specification leads to three different

general forms for local spatial association:
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Gi ¼
X

i;j

P ið Þ �Q
� �

ð3Þ

Gi ¼
X

i;j

P �Q ið Þ
� �

ð4Þ

Gi ¼
X
i;j

P ið Þ �Q ið Þ
� �

ð5Þ

where P(i) and Q(i) are certain forms of local spatial proximity matrix and local

numeric similarity matrix for a location. These three different definitions yield an

identical set of local measures but with different sampling distributions. From this

observation, Sokal, Oden, and Thomson (1998) incorrectly conclude that ‘‘when

we permit only conditional permutations, all three Mantel versions of the LISA will

give rise to the same (conditional) reference distribution’’ (p. 335) and ‘‘there is not

a unique total reference distribution for a LISA, hence no unique set of total

moments’’ (p. 335). Conceptually, the three different specifications are associated

with three different randomization assumptions, and thus it is not unusual to

observe that they yield different sets of distributional properties.

First, one specified in (3) is related to what may be called the ‘‘location-based

total randomization’’ that is identical to what Sokal, Oden, and Thomson (1998)

calls the ‘‘total randomization,’’ where a local spatial configuration consisting of an

ith location and its neighbors is fixed and different sets of values are permuted over

there. A value being set to the ith location, all the other values are permuted to

define a set of neighbors with resulting in a set of local statistics, and then another

value is set to the ith location and the same procedure is undertaken, yielding

another set of local statistics. In this randomization, the expected value is the

average value of all possible local measures that can be given to the ith location.

Subsequently, the term total randomization will be used to refer to this location-

based total randomization.

Second, one specified in (4) is related to what may be called the ‘‘value-based

total randomization,’’ where a numeric vector consisting of n observations are

permuted over the given spatial configuration with an ith value always being

positioned at the reference spot. An ith value being set to a location, all the other

values are permuted to define a set of neighbors, and then the ith value moves on to

another location and the same procedure is repeated. In this type of randomization,

the expected value is the average value of all possible local measures that can be

given to the ith value. Obviously, this randomization is deemed to be of little value

for spatial statistics, because locations are lost.

Third, one specified in equation (5), in a conceptual sense, conforms to what

has been called the ‘‘conditional randomization’’ (Anselin 1995; Sokal, Oden, and

Thomson 1998), where an ith value is set on the corresponding ith location and all

the other values are permuted to constitute a set of its neighbors over the given local

spatial configuration. This more restrictive randomization scheme gives rise to
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another issue. The local measure may not have to be defined by matrices for certain

measures. Rather, it is better seen as the sum of the pairwise products between

two vectors that are drawn from the corresponding global matrices as seen in (2)

(also see Sokal, Oden, and Thomson 1998). In other words, a local measure can be

given as
P

i p ið Þ � q ið Þ� �
, rather than one in (5) (here p(i) and q(i) are certain forms

of local vectors derived from their matrix counterparts, P(i) and Q(i)). This implies

that local measures of spatial association may be classified into two categories in

terms of how to define a general form of local measures under the conditional

randomization.

A bivariate situation requires a further clarification, because two elements in a

pair should be specifically defined along with their relationships with spatial

configurations. There might be three ways of defining the relationships among

the three elements (two variables and a spatial setting). One way is first to assign a

value in X to a location and permute other values to define its neighbors. For each

local setting in X, values in Y are randomly permuted to define a local spatial setting

in the other side. As in the univariate situation, then, another value in X is set to the

location and all the permutation procedure is repeated. In this case, the link

between xi and yi in the original variables does not have to be maintained. Second,

the ith values in X and Y are bound to each other and are assigned to the original ith

location. Their neighbors are then defined by permuting all the other values on

each side. In this case, elements in a pair of neighbors, xj and yj, need not follow the

geographical reference in the original vectors. In other words, once a pivot value at

a location are determined from the original order, permutations for neighbors are

independently conducted between two variables.

The third way is to undertake the permutation procedure with all the values in

X and Y being bound to each other according to the original order. For example,

if xj is chosen as xi’s neighbor in a given location, the corresponding yj should

be placed on that location as yi’s neighbor. Once the permutation is done for the ith

pair, another pair of values is assigned to that location and all the permuta-

tion procedure is repeated. Among the three specifications, only the third way

meets the randomization principles as can be seen from a Monte Carlo simulation

conducted for Lee’s L (Lee 2001a). This can be seen as a bivariate version of the

total randomization. The conditional randomization for bivariate situations can

be easily conceptualized. A permutation is conducted only on a location, not

furthering onto other locations. That is, an ith pair, whose elements are bound to

each other, is fixed at its original location, and all the other pairs, whose elements

are also bound to each other, are permuted to define two sets of neighbors around

the location.

Table 1 lists the five local measures of spatial association for which I will

attempt to derive the first two moments based on the generalized randomiza-

tion approach. Here, zX and zY are the standardized vectors of variables X and Y

(elements are subtracted by a mean and divided by a population standard

deviation). The equation for local Geary’s ci is modified from Anselin’s original
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one in order to conform to a more restrictive additivity requirement that the average

value of local measures is equal to the global measure as expressed by

G ¼

P
i

Gi

n
ð6Þ

The matrix notation for local Geary’s ci was derived by Lee (2001b) for a

quadratic form that will be elaborated. The local Cross-Moran equation is derived

from Wartenberg’s (1985) global measure, and local Lee’s Si and Li follow Lee’s

definition (Lee 2001a). Getis-Ord’s G statistic is not examined here partially

because it does not have a corresponding global measure satisfying the additivity

requirement and partially because local Lee’s Si is almost identical to a modified

version of Getis-Ord Gi
� (Leung, Mei, and Zhang 2003, p. 730). In addition, one

might easily recognize that Li is the bivariate extension of Si as local Cross-Moran is

of local Moran’s Ii.

The extended Mantel test and the generalized vector randomization test

Lee (2004) demonstrates that all the global measures of spatial association,

univariate or bivariate, belong to the general class of the Mantel statistic and shows

that his significance testing method (1967) and its extension (Heo and Gabriel

1998) provide a set of equations for the first two moments for all the measures with

any kinds of spatial weights matrices, zero diagonal or not. This extended Mantel

test is easily applicable to local measures as far as they conform to the general form

Table 1 Five Local Measures of Spatial Association

Dimensions Measures Summation notation Matrix notation

Univariate Local

Moran’s Ii
n2P

i

P
j

vij

P
j

vij xi��xð Þ xj��xð ÞP
i

xi��xð Þ2
n zXð ÞT VizX

1T V1

Local

Geary’s ci
n n�1ð Þ

2
P

i

P
j

vij

P
j

vij xi�xjð Þ2P
i

xi��xð Þ2

n�1
2

zXð ÞT Oi� ViþVT
ið Þ½ �zX

1T V1

Local

Lee’s Si n2

P
i

P
j

vij

� �2

P
j

vij xj��xð Þ
� �2

P
i

xi��xð Þ2

n
zXð ÞT VT

i
Við ÞzX

1T VT Vð Þ1

Bivariate Local

Cross-

Moran

n2P
i

P
j

vij

P
j

vij xi��xð Þ yj��yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

xi��xð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

yi��yð Þ2
q n zXð ÞT VizY

1T V1

Local

Lee’s Li n2

P
i

P
j

vij

� �2

P
j

vij xj��xð Þ
� � P

j

vij yj��yð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

xi��xð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

yi��yð Þ2
q

n
zXð ÞT VT

i
Við ÞzY

1T VT Vð Þ1

NOTE: All theses definitions satisfy the additivity requirement that the average value of local

measures is equal to the corresponding global measure as presented in (6).
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of the Mantel statistic that is expressed a sum of pairwise products between two

matrices, one associated with spatial proximity among locations and the other with

numeric similarity among values at the locations.

If a spatial association measure is defined as the sum of pairwise products

between two vectors rather than matrices, the extended Mantel test would be

redundant. A much simpler randomization test is enough, which might be called

the generalized vector randomization test. Hubert (1984, p. 453; 1987, p. 28) once

provided the equations for expected values and variances.

These two methods will collectively provide a general foundation on which the

distributional properties for all the local measures of spatial association are

obtained when P, Q, p, and q for each measure are properly specified depending

on a randomization assumption involved, total or conditional. The extended

Mantel test is utilized for all the measures under the total randomization assump-

tion, while the generalized vector randomization test is exploited under the

conditional randomization, but only for three measures, local Moran Ii, local

Geary ci, and local Cross-Moran. Lee’s measures need the extended Mantel test

for both the assumptions, because none of the measures can be defined as a

measure of vector comparison. This also implies that the general procedures should

be tailorized when applied to a particular measure, which will be exhaustively

discussed in the next section.

In summary, it was acknowledged in this section that, if a measure is defined as

a sum of pairwise products either between two matrices or between two vectors

under a particular randomization assumption, each of the two testing procedures,

the extended Mantel test and the generalized vector randomization test, can be

utilized to obtain the expectation and variance of the measure. In the next section,

we will see how to formulate a local measure with relevant matrices and vectors

under a particular randomization assumption and how to articulate the formulation

to fit it into the specific situation of permutation dictated by a particular randomi-

zation assumption.

An application of the generalized randomization test to local measures of

spatial association

Defining local matrices and vectors

It is necessary to define some local matrices and vectors in order subsequently to

define general forms of spatial association measures based on the total and

conditional randomization assumptions. A local measure of spatial association

should satisfy either:

Gi ¼
X

i;j

P ið Þ �Q
� �

¼
X

i

p ið Þ � q ið Þ
� �

or ð7Þ

Gi ¼
X

i;j

P ið Þ �Q
� �

¼
X

i;j

P ið Þ �Q ið Þ
� �

ð8Þ
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where P(i) is a local spatial proximity matrix at an ith location, Q is a global numeric

similarity matrix among values at the locations, p(i) and q(i) are local vectors for the

ith location derived from P(i) and Q, and � denotes pairwise products between the

two matrices or vectors. These two categories possess the common definition for

the total randomization as seen in (3), but are differentiated in formulating a general

form of local measures for the conditional randomization. As mentioned above, (7)

works for local Moran’s Ii, local Geary’s ci, and local Cross-Moran, while (8) does

for Lee’s Si and Li.

Tiefelsdorf (1998) defines a local spatial weights matrix in a symmetric star-

shaped form. However, I here define a local spatial weights matrix Vi by assigning

zeros to all the elements except for ones on an ith row in a global spatial weights

matrix V.

Vi ¼
0

vi1 � � � vii � � � vin

0

2
64

3
75 ð9Þ

This nonsymmetric form of a local spatial weights matrix is preferred not only

because the symmetricity required for the exact distribution approach can be

preserved by a transformation function, VS
i ¼ 1

2 Vi þ VT
i

� �
, but because the sym-

metric form does not work for bivariate measures. As a global spatial proximity

matrix P is a normalized form of a global spatial weights matrix V, a local spatial

proximity matrix P(i) for local Moran’s Ii and local Cross-Moran is defined as a

normalized form of Vi multiplied by n, and the associated spatial proximity vector,

p(i), is accordingly defined (refer to Table 2). It should be noted that the number of

observations (n) should be multiplied for local measures in order to satisfy the more

restrictive additivity requirement defined in (6).

The P(i)s for local Geary’s ci, Lee’s Si, and Li, however, take more complicated

forms. The matrix for local Geary’s ci is given as

P ið Þ ¼ n � 1

21T V1
Oi � Vi þ VT

i

� �	 


¼ n � 1

21T V1

vi1 0 �vi1

0 . .
. ..

.
0

�vi1 � � �
P

j

vij � vii � � � �vin

0 ..
. . .

.
0

�vin 0 vin

2
666666666664

3
777777777775

ð10Þ

where Xi is a diagonal matrix of vi1; � � � ; vii; � � � vinf g with vii being added by
P

j vij ,

a row-sum at each location (Lee 2001b; also see Leung, Mei, and Zhang 2003).

Unlike in local Moran’s Ii and local Cross-Moran, the local spatial proximity vector,
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p(i), for local Geary’s ci is not defined in a successive manner. The specification

shown in Table 2 first takes the diagonal element of P(i) and then pi
(i) is multiplied by

� 1, making the sums of all the elements in each of P(i) and p(i) become equal. This

is necessary for obtaining the distributional properties of the measure under the

conditional randomization using the generalized vector randomization test.

The P(i) matrix for Si and Li is given as

P ið Þ ¼ n

1T VT V
� �

1
VT

i Vi

	 


¼ n

1T VT V
� �

1

v2
i1 � � � vi1vii � � � vi1vin

..

. . .
. ..

. . .
. ..

.

viivi1 � � � v2
ii � � � viivin

..

. . .
. ..

. . .
. ..

.

vinvi1 � � � vinvii � � � v2
in

2
66666666664

3
77777777775

ð11Þ

Unlike other measures, Si and Li do not have a local spatial proximity vector,

thus working with (8), because there is no way to define the measures as sums of

pairwise products between two vectors to satisfy (7). This implies that the extended

Mantel test should be utilized for both assumptions of randomization for the

measures.

Table 2 also shows that the Q matrix is defined for univariate and bivariate

measures in the same way as in global measures (see Lee 2004, p. 1694, table 4).

The local numeric similarity vector at an ith location, q(i), for local Moran’s Ii and

Table 2 The Definition of Matrices and Vectors for Local Measures of Spatial Association

Local

Moran’s Ii

Local

Geary’s ci

Local

Lee’s Si

Local

Cross-Moran

Local

Lee’s Li

P V
1T V1

n�1
n

O�Vð Þ
1T V1

VT V
1T VT Vð Þ1

V
1T V1

VT V
1T VT Vð Þ1

P(i)
n Vi

1T V1
n�1

2

Oi� ViþVT
ið Þ½ �

1T V1
n

VT
i

Vi

1T VT Vð Þ1
n Vi

1T V1 n
VT

i
Vi

1T VT Vð Þ1
p(i) n

1T V1
vi1; � � � ;ð

vii ; � � � ; vinÞT

n � 1

21T V1
vi1; � � � ;ð

�ðvi: � viiÞ; � � � ; vinÞT

Not defined n

1T V1
vi1; � � � ;ð

vii ; � � � ; vinÞT

Not defined

Q zX zXð ÞT zX zXð ÞT zX zXð ÞT zX zYð ÞT zX zy

� �T

Q(i) Not defined Not defined See (12) Not defined See (12)

q(i) zXizX z
2ð Þ

X � 2 zXi zX
Not defined zXi zY Not defined

NOTE: z
2ð Þ

X ¼ z2
Xii ; � � � ; z2

Xi ; � � � ; z2
Xn

� �T
and, for the definition of the other quantities used in this

table, refer to Appendix A.
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local Cross-Moran is given, respectively, by zXizX and zXizY where zXi is the ith

element in a standardized form of variable X. It is also noted from Table 2 that the

vector of q(i) for local Geary’s ci again takes a more complicated form in order to

satisfy (7).

Unlike the other measures, Lee’s measures have a local numeric similarity

matrix, Q(i), to satisfy (8):

Q ið Þ ¼

q1;1 þ q1;i þ qi;1

� �
� � � q1;i�1 0 q1;iþ1 � � � q1;n

..

. . .
. ..

. ..
. ..

. . .
. ..

.

qi�1;1 � � � qi�1;i�1 þ qi�1;i þ qi;i�1

� �
0 qi�1;iþ1 � � � qi�1;n

0 � � � 0 qi;i 0 � � � 0

qiþ1;1 � � � qiþ1;i�1 0 qiþ1;iþ1 þ qiþ1;i þ qi;iþ1

� �
� � � qiþ1;n

..

. . .
. ..

. ..
. ..

. . .
. ..

.

qn;1 � � � qn;i�1 0 qn;iþ1 � � � qn;n þ qn;i þ qi;n

� �

2
66666666666664

3
77777777777775

ð12Þ

This matrix is constructed by (i) replacing all the elements in the ith row and

column of the global Q matrix with zeros except for qii and then (ii) moving the

nullified values onto the diagonal for a summation. If a spatial weights matrix with a

zero diagonal is concerned, the second part is not needed such that Q(i) has the

vector of q11; � � � ; qii; � � � qnnf g on its diagonal. This specification will be discussed

in more detail where it is utilized for the conditional randomization of the

measures.

The total randomization assumption

Following (7) and (8), the general form of local spatial association based on the total

randomization assumption is given by

Gi ¼
X

i;j

P ið Þ �Q
� �

¼ tr P ið ÞT Q
� �

¼ tr P ið ÞQT
� �

ð13Þ

where P(i) and Q for each local measure are seen in Table 2. Because the general

form above is defined as some relationships between two matrices, the extended

Mantel test presented by Lee (2004) applies to compute the expected value and

variance. The difference between global and local measures in terms of the

sampling distribution result only from differences between P and P(i).

Table 3 lists some necessary quantities and the equations for the expected

values for the measures. When the necessary quantities are computed, the expected

value is obtained, as in global measures (Lee 2004, p. 1691), by

E Gið Þ ¼E Goff
i

� �
þ E Gon

i

� �

¼
1T P ið Þ1
� �

� tr P ið Þ� �	 

1T Q1
� �

� tr Qð Þ
	 


n n � 1ð Þ þ
tr P ið Þ� �

tr Qð Þ
n

ð14Þ

Regarding the computation of the quantities, there is one thing that should be

cautiously acknowledged. In order to calculate necessary quantities for global

measures, both matrices of P and Q should be symmetric (Lee 2004, pp. 1690–91).

An asymmetric matrix (e.g., row-standardized spatial weights matrices) can be
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rendered symmetric by an equation, 1
2 Pþ PT
� �

. Although this requirement needs to

be maintained for local measures so that both P(i) and Q should be made symmetric,

local Cross-Moran is exceptional such that its Q matrix should remain nonsym-

metric in computing its necessary quantities.

The extended Mantel test can be utilized for any kinds of spatial weighting

schemes, including nonzero diagonal ones. When a row-standardized matrix (W)

with a zero diagonal is concerned, the equations are more simplified. From Table 3,

one can easily recognize that expected values are reduced to � 1/(n� 1), 1, and

� rX, Y/(n� 1), respectively, for local Moran’s Ii, local Geary’s ci, and local Cross-

Moran and understand that they are identical to those for the corresponding global

measures (see Lee 2004, p. 1696, table 4). The expected value equations for Lee’s Si

and Li are hardly simplified mainly because the measures may work better with a

spatial weights matrix with a nonzero diagonal. As Lee (2004) explains, both

measures are predicated on gauging a representative value for an overall focal set

composed of a reference area and one’s neighbors, rather than comparing the

former with the latter; hence, it would be necessary to utilize a spatial weights

matrix with a nonzero diagonal, such as C� with 1s on the diagonal of a binary

connectivity matrix C or W� as a row-standardized version of C� (see Lee 2004,

p. 1696). When the number of neighbors of an ith location in W� is denoted by ni
�,

the expected values for both measure will be reduced, respectively, to

E Sið Þ ¼
n � n�i
n � 1ð Þn�i

and E Lið Þ ¼
n � n�i
n � 1ð Þn�i

rXY ð15Þ

Note that ni
� is always one degree larger than ni for W or C, because a reference

area oneself is regarded as a neighbor in W�.
The equations for variances are also obtained according to the general

procedure provided by Lee (2004, p. 1691). Table 4 lists the variance equations

for the three measures, and those for Lee’s measures are given in Appendix A. The

equations in Table 4 will be simplified by putting vii 5 0 when a zero-diagonal

spatial weights matrix is concerned.

The conditional randomization assumption

The general form of local spatial association based on the conditional randomization

is not universally defined. As already seen from the distinction between (7) and (8),

there are two forms: one defined as the sum of pairwise products between two

vectors (local Moran’s Ii, local Geary’s ci, and local Cross-Moran) and the other as the

sum of pairwise products between two matrices (Lee’s Si and Li). Thus, it is obvious

that the former utilizes the generalized vector randomization test whereas the latter

should depend on the extended Mantel test again. It should be acknowledged that a

reference location is dropped in a permutation process by the definition.

With reference to these permutation principles, the general form for local

Moran’s Ii, Geary’ci, and Cross-Moran based on the conditional randomization

assumption is given as
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Gi ¼
X

i

p ið Þ � q ið Þ
� �

¼p
ið Þ

i q
ið Þ

i þ
X

k

p �ið Þ � q �ið Þ
� � ð16Þ

where pi
(i) and qi

(i) are the ith entries in p(i) and q(i) as defined in Table 2, and p(� i)

and q(� i) are (n� 1)-by-1 vectors derived from p(i) and q(i) by eliminating the ith

elements. The specification in the lower part in (16) is needed to articulate the

general form in the upper part to fit it into the simulation situation dictated by the

conditional randomization assumption. Now, the sampling distribution of local

measures is determined by a permutation between two vectors, p(� i) and q(� i). By

slightly modifying the original equations provided by Hubert (1984, 1987), the

expected value and variance for the local measures are given, respectively, by

E Gið Þ ¼ p
ið Þ

i q
ið Þ

i þ
1

n � 1

X
k

p
�ið Þ

k

X
k

q
�ið Þ

k ð17Þ

Var Gið Þ ¼
1

n � 2

X
k

p
�ið Þ

k � �p �ið Þ
� �2X

k

q
�ið Þ

k � �q �ið Þ
� �2

ð18Þ

where pk
(� i) and qk

(� i) are entries in p(� i) and q(� i), and �p �ið Þ and �q �ið Þ are the mean

values of those vectors. Note that n in the original equations must be replaced by

(n� 1).

Table 5 lists the equations for the expected values along with the necessary

quantities for local Moran’s Ii, Geary’s ci, and local Cross-Moran. If a row-

standardized spatial weights matrix with zeros in its diagonal (W) is concerned,

Table 4 Variances for Local Measures of Spatial Association Under the Total Randomization

Assumption

Gi Variances

Local Moran’s Ii K2
1

n � 1ð Þ n � 2ð Þ
n � 1ð Þ v

2ð Þ
i: � v2

ii

� �
� vi: � viið Þ2

h i
n � n v

2ð Þ
i: � v2

ii

� �
� 2 vi: � viið Þ2

h i
b2

þ n � 2ð Þvii n þ 1ð Þvii � 2vi:½ � b2 � 1ð Þ

8<
:

9=
;

� K1
vii � vi:

n � 1

� �2

Local Geary’s ci
K2

1

v
2ð Þ

i:
�v2

ii

� �
þ vi:�viið Þ2

	 

n�1ð Þ b2þ3ð Þ

4n

� �
� K1 vi: � viið Þ½ �2

Local Lee’s Si Given in Appendix A

Local Cross-

Moran
K2

1

n � 1ð Þ n � 2ð Þ
n � 1ð Þ v

2ð Þ
i: � v2

ii

� �
� vi: � viið Þ2

h i
n � n v

2ð Þ
i: � v2

ii

� �
� 2 vi: � viið Þ2

h i
bXY

1 r2
XY

þ n � 2ð Þvii n þ 1ð Þvii � 2vi:½ �r2
XY bXY

1 � 1
� �

8<
:

9=
;

� K1
vii � vi:

n � 1
rXY

� �2

Local Lee’s Li Given in Appendix A

NOTE: K1 ¼ n
1T V1
¼ n=

P
i

P
j vij and, for the definition of the other quantities used in this

table, refer to Appendix A.
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the expected value for the measures are computed, respectively, by � zXi
2 /(n� 1),

(zXi
2 11)/2, and � zXi

2 zYi
2 /(n� 1). Whereas the expected values under the total

randomization are identical for all the locations with W (refer to Table 3), ones

under the conditional randomization are dependent on the value on each location.

An inferential test for Si and Li based on the conditional randomization is much

more complicated. With reference to the permutation principles described above,

the general form for both measures is given by

Gi ¼
X

i;j

P ið Þ �Q ið Þ
� �

¼p
ið Þ

ii q
ið Þ

ii þ
X
k ;l

P �ið Þ �Q �ið Þ
� � ð19Þ

where pii
( i) and qii

( i) are diagonal entries in P(i) and Q(i) as given in Table 2, and P(� i)

and Q(� i) are (n� 1)-by-(n� 1) matrices obtained by eliminating the ith row and

column from P(i) and Q(i). Here Q(� i) needs a further elaboration. When the ith row

and column of the matrix defined in (12) are eliminated, Q(� i)s for Si and Li are,

respectively, given:

Q �ið Þ ¼ z
�ið Þ

X z
�ið Þ

X

� �T
þ 2diag zXiz

�ið Þ
X

� �
and ð20Þ

Q �ið Þ ¼ z
�ið Þ

X z
�ið Þ

Y

� �T
þ diag zXiz

�ið Þ
Y

� �
þ diag zYiz

�ið Þ
X

� �
ð21Þ

This specification is necessary to ensure that the ith elements themselves in X

and Y are not involved in the permutation process but their associations with other

values resulting from nonzero-diagonal elements in V are maintained in the

permutation process. When a spatial weights matrix with a zero diagonal is

concerned, (20) and (21) will be simplified, respectively, as

Q �ið Þ ¼ z
�ið Þ

X z
�ið Þ

X

� �T
and Q �ið Þ ¼ z

�ið Þ
X z

�ið Þ
Y

� �T
.

Table 5 Expectations for Local Moran’s Ii, Local Geary’s ci, and Local Cross-Moran Under

the Conditional Randomization Assumption

p vector q vector

GI pi
(i) P

k

p
�ið Þ

k
qi

(i) P
k

q
�ið Þ

k
E(Gi)

Local Moran’s Ii K1vii K1(vi.� vii) zXi
2 � zXi

2
K1

nvii�vi:
n�1 z2

Xi

Local Geary’s ci �K1
n�1
2n vi: � viið Þ K1

n�1
2n vi: � viið Þ � zXi

2 n1zXi
2

K1
vi:�vii

2 1þ z2
Xi

� �
Local Cross-Moran K1vii K1(vi.� vii) zXizYi � zXizYi K1

nvii�vi:
n�1 zXizYi

NOTE: K1 ¼ n
1T V1
¼ n=

P
i

P
j vij and, for the definition of the other quantities used in this

table, refer to Appendix A.
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Because Si and Li based on the conditional randomization are defined by some

relationships between two matrices, the extended Mantel test again applies to

generate the equations for the expected value and variance. By slightly modifying

(14), we have

E Gið Þ ¼p
ið Þ

ii q
ið Þ

ii

þ
1T P �ið Þ1
� �

� tr P �ið Þ� �	 

1T Q �ið Þ1
� �

� tr Q �ið Þ
� �h i

n � 1ð Þ n � 2ð Þ

þ
tr P �ið Þ� �

tr Q �ið Þ
� �

n � 1

ð22Þ

Note that n in (14) must be replaced by (n� 1) in the computation of the

necessary quantities. It is shown that the overall expected value is divided into three

parts: one for the reference area that is not involved in the permutation process,

another for the off-diagonal elements, and the other for the on-diagonal. Table 6

lists the equations of the expected values for the measures along with the three parts

Table 6 Expectations for Local Lee’s Si and Li Under the Conditional Randomization

Assumption

Measures Expectations

Local Lee’s Si

E(Si)

K2v2
ii z

2
Xi þ

K2
n�1ð Þ n�2ð Þ

n � 1ð Þ v
2ð Þ

i: � v2
ii

� �
� vi: � viið Þ2

h i
n

� 3n � 4ð Þ v
2ð Þ

i: � v2
ii

� �
� 2 vi: � viið Þ2

h i
z2

Xi

8><
>:

9>=
>;

Reference

location

K2vii
2zXi

2

E(Si
off)

K2
v

2ð Þ
i:
�v2

ii

� �
� vi:�viið Þ2

	 

n�2z2

Xið Þ
n�1ð Þ n�2ð Þ

E(Si
on)

K2
v

2ð Þ
i:
�v2

ii

� �
n�3z2

Xið Þ
n�1 (for a zero-diagonal, K2

v
2ð Þ

i:
n�z2

Xið Þ
n�1 )

Local Lee’s Li

E(Li)

K2v2
ii zXizYi þ K2

n�1ð Þ n�2ð Þ

n � 1ð Þ v
2ð Þ

i: � v2
ii

� �
� vi: � viið Þ2

h i
nrXY

� 3n � 4ð Þ v
2ð Þ

i: � v2
ii

� �
� 2 vi: � viið Þ2

h i
zXizYi

8><
>:

9>=
>;

Reference

location

K2vii
2zXizYi

E(Li
off)

K2
v

2ð Þ
i:
�v2

ii

� �
� vi:�viið Þ2

	 

nrXY�2zXizYið Þ

n�1ð Þ n�2ð Þ

E(Li
on)

K2
v

2ð Þ
i:
�v2

ii

� �
nrXY�3zXizYið Þ

n�1 (for a zero-diagonal, K2
v

2ð Þ
i:

nrXY�zXizYið Þ
n�1 )

NOTE: K2 ¼ n
1T VT Vð Þ1 ¼ n=

P
i

P
j vij

� �2
and, for the definition of the other quantities used in

this table, refer to Appendix A.
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that will be needed to compute the variances in accordance with the equations

given in Appendix A.

It should be acknowledged from Table 6 that the overall expectation for a zero-

diagonal situation cannot be obtained by simply substituting zero for vii in the

equations. That works for the reference location value and the expected value for

off-diagonal elements, but not for the expected value for on-diagonal elements.

This is simply because Q(� i) matrix is differently defined between the nonzero and

zero-diagonal situations as discussed above. Thus the equation for the expected

value in a zero-diagonal situation can be generated by summing up E(Gi
off) with

vii 5 0 and E(Gi
on) presented in parentheses in Table 6 (the reference location

value will be zero, so it drops out). When the number of neighbors of an ith

observation in W� is denoted by ni
�, the expected values for Si and Li will be

reduced, respectively, to

E Sið Þ ¼
n � n�i
� �

n�i � 1
� �

n þ n � n�i
� �

n � 2n�i
� �

þ 2
	 


z2
Xi


 �
n � 1ð Þ n � 2ð Þn�2i

ð23Þ

E Lið Þ ¼
n � n�i
� �

n�i � 1
� �

nrXY þ n � n�i
� �

n � 2n�i
� �

þ 2
	 


zXizYi


 �
n � 1ð Þ n � 2ð Þ � n�2i

ð24Þ

Note again that ni
� is always one degree larger than ni for W. A more

comprehensive investigation on the distributional aspects of Lee’s Li will be

undertaken elsewhere. The equations of variance for local Moran’s Ii, local Geary’s

ci, and local Cross-Moran are given in Table 7 and ones for Si and Li are given in

Appendix A. Again, the equations in Table 7 will be simplified by substituting zero

for vii in the equations when a zero-diagonal spatial weights matrix is concerned.

In summary, it was acknowledged in this section: (i) under the total randomi-

zation assumption, all five measures are defined as the sum of pairwise products

Table 7 Variances for Local Measures of Spatial Association Under the Conditional Rando-

mization Assumption

Gi Variances

Local Moran’s Ii K2
1

n
n�1ð Þ2 n�2ð Þ n � 1ð Þ v

2ð Þ
i: � v2

ii

� �
� vi: � viið Þ2

h i
n � 1� z2

Xi

� �
z2

Xi

Local Geary’s ci K2
1

4n2 n � 2ð Þ n � 1ð Þ v
2ð Þ

i: � v2
ii

� �
� vi: � viið Þ2

h i

n � 1ð Þ nb2 � 4nb1zXi þ 4nz2
Xi � z4

Xi

� �
� n þ z2

Xi

� �2
h i

Local Lee’s Si Given in Appendix A

Local Cross-Moran K2
1

n
n�1ð Þ2 n�2ð Þ n � 1ð Þ v

2ð Þ
i: � v2

ii

� �
� vi: � viið Þ2

h i
n � 1� z2

Yi

� �
z2

Xi

Local Lee’s Li Given in Appendix A

NOTE: K1 ¼ n
1T V1
¼ n=

P
i

P
j vij and, for the definition of the other quantities used in this

table, refer to Appendix A.
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between two matrices such that all of them utilize the extended Mantel test;

(ii) there are two categories of the measures in terms of how to formulate them

under the conditional randomization, one defined as the sum of pairwise products

between two matrices and the other as sum of pairwise products between two

vectors; (iii) the former still depends on the extended Mantel test, but the latter

should utilize the generalized vector randomization test; and (iv) the testing

procedures need to be tailorized in order to embrace the different nature of the

measures and the particular situation of permutation. In the next section, I will

investigate the validity of the testing procedure by conducting a Monte Carlo

simulation.

An illustration

For an experiment, I designed two different spatial patterns on a hypothetical space

that is composed of 37 hexagons (Fig. 1). The two spatial patterns have the same

mean (1.730) and variance (0.576) and the Pearson’s correlation coefficient

between them is 0.530. Pattern A is used for univariate measures, and the relation

between Patterns A and B is utilized for bivariate measures. I choose three

hexagons labeled, respectively, a, b, and c, each of which has different linkage

degrees (six neighbors for a, four for b, and three for c) and different values (three for

a, two for b, and one for c). Two different spatial weights matrices are built; a binary

3
2
1

BA

Variance: 0.576
Mean: 1.730

Correlation: 0.530

c

b

a

Figure 1. Hypothetical spatial patterns.
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connectivity matrix C for local Moran’s Ii, local Geary’s ci, local Cross-Moran, and

a row-standardized version of C�, that is, W� for Lee’s Si and Li.

In order to investigate the exactness of the computation of the first two

moments offered by the generalized randomization test for each measure, I conduct

10,000 random permutations for each of the three locations, whose results are

shown in Table 8. The computation of expected values and variances based on the

equations drawn from the proposed randomization tests appears highly reasonable

for the first two moments when compared with the random permutation results.

Table 8 provides some additional information on other aspects of the distribu-

tional properties of the measures. First, for the total randomization, the magnitude

of variances are positively related to local linkage degrees at locations with C while

negatively related with W�, which is correspondent to findings by Tiefelsdorf,

Griffith, and Boots (1999). Second, for the conditional randomization, there is no

direct relationship between local linkage degrees and the magnitude of variances,

mainly because z-standardized values on the reference locations are involved in

the variance computation. A higher z-standardized value at a reference location,

when squared, results in a higher variance for local Moran’s Ii, Geary’s ci, and

Cross-Moran. However, Lee’s Si and Li still have a relatively high positive relation-

ship between local linkage degrees and the magnitude of variances as in the total

randomization.

Discussion and conclusions

This article shows that the generalized randomization approach including the

extended Mantel test and the generalized vector randomization test succeeds in

providing the first two moments for local measures of spatial association under

different randomization assumptions. Specifically, it has been proven that: (i) the

extended Mantel test can be applied to all of the local measures under the total

randomization; (ii) it can also be applied to Lee’s Si and Li under the conditional

randomization; and (iii) the generalized vector randomization test can be used for

local Moran’s Ii, local Geary’s ci, and local Cross-Moran under the conditional

randomization. The testing methods presented in this article have been proven in

comparison with the simulation results not only to conform to the earlier findings

for univariate local measures such as Moran’s Ii and Geary’s ci (Anselin 1995;

Sokal, Oden, and Thomson 1998), but successfully to be extended to a new

univariate measure, Si, and to bivariate local measures such as local Cross-Moran

and Li. The testing procedure presented in this article is also extendable to some

newly devised measures such that it could provide a reliable platform of hypothesis

testing for spatial analysts who come up with new measures but suffer from inability

to offer the equations for the first two moments, being forced to depend on a certain

form of simulation.

This approach, however, has some drawbacks. First, it does not solve the two

problems that have been regarded as crucial for the significance testing for local
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measures: (i) the relationship between overall and individual a levels and (ii) the

presence of global spatial dependence. The former problem results from the fact

that an a level for an overall set should be lowered when it applies to its individuals

(Getis and Ord 1992; Anselin 1995). Even though some procedures such as the

Bonferroni bounds procedure have been proposed, this problem has never been

solved yet. The second problem arises because significance-testing procedures for

local spatial associations are indifferent to the global level of spatial dependence;

the distributional properties of local statistics should change as the levels of global

spatial dependence change (see Anselin 1995; Ord and Getis 1995, 2001;

Tiefelsdorf 1998). To date, only the exact distribution approach can solve this

problem but only for univariate measures (for local Moran’s Ii, see Tiefelsdorf 1998,

2000). The two problems together dictate a restriction on the use of local measures

that they should be used in an exploratory manner, not in a confirmatory manner

(Sokal, Oden, and Thomson 1998).

The second drawback of the approach presented here is that it does not cope

with nonnormality of sampling distributions as discussed for the extended Mantel

test (Lee 2004). As Boots and Tiefelsdorf (2000) demonstrate, local measures are far

from normally distributed regardless of the number of neighbors at a location

especially due to extremely high kurtosis. Thus, devising a way of extracting higher

moments is much more needed for local measures than global ones. Thus, the next

step will be to extract easily understandable sets of equations for higher moments

with reference to some works done by Siemiatycki (1978), Mielke (1979), and

Hubert (1984, 1987). When skewness is solely known, a Pearson Type III (gamma)

function can be utilized (Costanzo, Hubert, and Golledge 1983), and when both

skewness and kurtosis are known, a beta distribution can be applied for a more

reliable inferential test (Hepple 1998).

It has been suggested that the conditional randomization is superior to the total

randomization (Anselin 1995; Sokal, Oden, and Thomson 1998). Anselin (1995, p.

112) contends that the conditional randomization approach could provide a

reliable basis even in the presence of global spatial autocorrelation. Sokal, Oden,

and Thomson (1998, p. 349) find that skewness and kurtosis are less pronounced in

the conditional randomization than in the total randomization. Despite some

advantages of the conditional randomization over the total randomization, how-

ever, it significantly erodes the nature of random variables by arbitrarily fixing a

reference value on a particular location (from a discussion with Tiefelsdorf).

In spite of some drawbacks, the randomization approach as presented here

should be appreciated in terms of its generality: (i) it is a distribution-free method,

enabling to escape from the normal distribution assumption in a population; (ii) it

applies to virtually all kinds of spatial association measures, whether global or

local, or whether contiguity based or distance based; and (iii) it can handle spatial

weights matrices with nonzero entries on their diagonals. Further, as long as we

aim to gauge each location’s relative contribution to the global spatial dependence

with local measures and to obtain an exploratory device of examining spatial
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heterogeneity by utilizing them, the randomization approach as a way of giving

probabilistic weights to local statistics may provide researchers with an initial and

reliable guideline in a pattern detection process. This could set the pace for the

‘‘local turn’’ occurring in a wide variety of subfields in spatial data analysis (see

Fotheringham and Brunsdon 1999).

Appendix A. Equations of variance elements for local Lee’s Si and Li under

the total and conditional randomization assumptions

For both measures, the usage of a spatial weights matrix with a nonzero diagonal is

assumed. The equations for the expected values of off- and on-diagonal elements

(E(Gi
off) and E(Gi

on)) are referenced by Tables 3 and 6. For Lee’s Si, the following

quantities are needed.
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With these quantities, the variance for each measure is computed by (Lee,

2004, p. 1690):
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1. Equations of variance quantities for local Lee’s Si under the total randomiza-

tion assumption
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