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A Generalized Procedure to Extract Higher Order Moments of
Univariate Spatial Association Measures for Statistical Testing
under the Normality Assumption
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Abstract : The main objective of this paper is to formulate a generalized procedure to extract the first four moments of
univariate spatial association measures for statistical testing under the normality assumption and to evaluate the viability
of hypothesis testing based on the normal approximation for each of the spatial association measures. The main results
are as follows. First, predicated on the previous works, a generalized procedure under the normality assumption was
derived for both global and local measures. When necessary matrices are appropriately defined for each of the
measures, the generalized procedure effectively yields not only expectation and variance but skewness and kurtosis.
Second, the normal approximation based on the first two moments for the global measures turned out to be
acceptable, while the notion did not appear to hold to the same extent for their local counterparts mainly due to the
large magnitude of skewness and kurtosis.
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1. Introduction

It has been well acknowledged that the use of
Moran’s [ as a global spatial association measure
to parameterize the spatial clustering in a
geographical pattern is a special case of its more
general use for assessing spatial autocorrelation
among regression residuals with an assumption
that unobservable disturbances are independent
identically normal distributed (Cliff and Ord,
1981; Upton and Fingleton, 1985; Anselin, 1988;
Tiefelsdorf and Boots, 1995). Distributional
properties of the measure including higher
moments under the assumption of spatial
independence have been examined (Henshaw,
1966; 1968; Hepple, 1998; Tiefelsdorf, 2000).
Further, an exact distribution approach has
demonstrated its superiority over the
approximation approach (Tiefelsdorf and Boots,
1995; Hepple, 1998; Leung et al., 2003) and its
ability to embrace the conditional moments
(Tiefelsdorf, 1998; 2000).

This paper is concerned with formulating a
general procedure to generate the first four
moments of spatial association measures. This is
based on a rationale that the moment extraction
procedure developed for Moran’s I can be
extended not only to other univariate spatial
association measures as suggested for Geary’s ¢
(Cliftf and Ord, 1981; Hepple, 1998), but also to
local measures as applied to local Moran’s I;
(Boots and Tiefelsdorf, 2000), as far as a measure
can be defined as scale invariant ratio of
quadratic forms of residuals (Tiefelsdorf, 2000).
Since spatial association measures are seen as
ratio of quadratic forms of deviants from an
overall mean, resulting distributional moments
correspond to those extracted under the
normality assumption (Cliff and Ord, 1981, 21).

Subsequently, I first elaborate the need for a
generalized approach to hypothesis testing for

spatial association measures. Second, I provide a
generalized procedure to generate the first four
moments of spatial association measures under
the normality assumption and apply the
generalized procedure to six different univariate
spatial association measures such as global
Moran’s I, local Moran’s [;, global Geary’s c, local
Geary’s ¢;, global Lee’s S and local Lee’s S;. For a
more detailed description of Lee’s measures, see
some previous works done by Lee (2001; 2004;
2008). It will be demonstrated that all the
measures are expressed as ratio of quadratic
forms of deviants from an overall mean, and that
only difference occurs in defining spatial
proximity matrices. Third, the computational
results in a hypothetical space are illustrated and
the viability of the normal approximation based

on the first two moments is examined.

2. A Generalized Approach to
Hypothesis Testing

1) Need for a generalized procedure for
statistical testing

I contend that there has been a lack of
generality in conducting significance testing for
spatial association measures. First, little attention
has been dedicated to the connection between
global and local measures with a few exceptions
(Tiefelsdorf, 1998; Tiefelsdorf, 2000; Boots and
Tiefelsdorf, 2000; Lee, 2004; 2008). Second,
investigating distributional properties has never
been undertaken for bivariate spatial association
measures (for exceptions, see Lee, 2004; 2008).
Third, existing procedures are confined to a
particular type of spatial weights matrix, that is,
one with a zero-diagonal. Thus, in the context of
univariate spatial association measures, we need

a generalized significance testing procedure
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which different measures, whether global or
local, are commonly predicated on with different
spatial settings, whether zero-diagonal spatial
weights matrices or not.

Even though significance testing is confirmatory
in nature, I argue that well-founded significance
testing is necessary for exploratory spatial data
analysis (ESDA). Pattern detection using spatial
association measures will be theoretically more
meaningful and practically more efficient if it is
guided by a statistical procedure. In the context
of global spatial association measures,
significance testing allows researchers to report
the overall degree of spatial dependence in a
probabilistic fashion. It is more crucial when
different spatial patterns are compared to assess
which ones are more spatially dependent with a
statistical confidence. In the context of local
spatial association measures, the task of exploring
mapped local spatial statistics will be enhanced
when they are in conjunction with their p-values.
For example, a spatial pattern would be more
obvious when only observations with a certain

level of significance are displayed.
2) Different significance testing methods

Significance testing for spatial association
measures can be categorized into three different
approaches: (i) approximation (normality and
randomization assumptions); (ii) exact
distribution; (i) simulation. The approximation
approach is further divided into two classes in
terms of whether a population distribution is
assumed normal or not. If observed sample
values are assumed to be random independent
drawings from one normal population, the
normality assumption applies to provide the first
two moments (Cliff and Ord, 1981). Even though
Henshaw (1966; 1968), inspired by Durbin and
Watson (1950; 1951), provides a general

procedure to compute the first four moments

for Statistical Testing under the Normality Assumption

under the normality assumption, its use has been
confined to global Moran’s I (Hepple, 1998) and
the selected local measures (Leung et al., 2003).

It should be noted that it is very often
unsustainable to assume a normal distribution of
a population that samples are drawn from. In
addition, it would be more intuitive to regard
observed sample values as a particular realization
of all possible spatial patterns with the sample,
than as one out of an infinite number of
numerical vectors with the same mean and
variance. This leads to the randomization
assumption. Cliff and Ord (1981) (also see Lee,
2008) contend that the randomization approach is
preferable either (i) when we consider all
possible permutations with a given data set, or
(iD) for any non-normal population. The second
issue is more crucial because variance computed
under the set of random permutations provides
an unbiased estimator for the variance of a
statistic for any underlying distribution (Cliff and
Ord, 1981, 42). And the randomization approach
is further divided into two distinctive assumptions
for local measures, total randomization and
conditional randomization (for a detailed
description, see Lee, 2008).

Lee (2004; 2008) proposed two generalized
significance testing methods under the
randomization assumption, the extended Mantel
test and a generalized vector randomization test,
and demonstrated that the two methods can be
applied to any spatial association measures,
univariate or bivariate, global or local, under any
assumption, total or conditional randomization. It
should be noted, however, that “not all
permutations of regional values are equally likely
because permutations with atypically high or low
values in the periphery are more likely than
permutations with atypically high or low values
near the center (Rogerson, 2006, 237).” This is
more obvious when spatial autocorrelation in

regression residuals, because a test based on
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randomization assumption ignores
autocorrelation among explanatory variables so
that random permutations do not constitute an
appropriate reference set for testing regression
residuals (Cliff and Ord, 1981, 200).

The exact distribution approach (Tiefelsdorf
and Boots, 1995; Hepple, 1998) is superior to the
approximation approach in the sense that it can
deal with other aspects of a sampling distribution
(i.e., skewness and kurtosis). The normal
approximation with the first two moments on
which the approximation approach is usually
based often appears flawed even with a large
sample size (Siemiatycki, 1978; Mielke, 1979).
Moreover, even with higher moments, the
approximation does not always yield accurate
probability values (see Costanzo et al., 1983;
Hepple, 1998). The exact distribution approach is
parametric along with the approximation
approach based on normality assumption in the
sense that they are built on a particular
population distribution, that is, normal
distribution. In contrast, the approximation
approach based on the randomization
assumption is non-parametric simply it does not
assume any population distribution such that it is
a distribution-free testing method.

In spite of its superiority in an inferential test
for spatial association measures, the exact
distribution approach has some drawbacks. First
of all, the assumption of the normal distribution is
still required so that it may not work properly in
situations where a normality assumption is hardly
sustainable. Secondly, it is computational more
intensive in comparison with the normal
approximation, although other approximation
methods could alleviate the computational
burden substantially (see Tiefelsdorf, 2002; Leung
et al., 2003).

The simulation approach, including a Monte
Carlo test (Cliff and Ord, 1981, 63-65), can be

seen as supplementary to the approximation

approach. Two different simulation designs could
conform to the two approximation assumptions
above: if a number of numeric vectors with the
same mean and variance as a given sample are
randomly generated, a set of statistics will be
obtained for the normality assumption; in
contrast, if a number of different orders of a
given sample are permuted, a set of resulting
statistics conforms to the randomization
assumption. Although a Monte Carlo test could
provide more accurate p-values than the normal
approximation with first two moments, especially
when an abnormal skewness or kurtosis is
present, it is supplementary to the approximation
approach, as long as a set of equations for
distributional moments are known.

Some efforts have already been made to
provide a generalized procedure to extract higher
moments for spatial association measures under
the randomization assumption (e.g., Siemiatycki,
1978; Mielke, 1979; Hubert, 1984; 1987). Thus,
this paper follows the same line but under
different assumption for sampling distribution, the

normality assumption.

3. A Generalized Procedure for
Univariate Spatial Association
Measures

1) A generalized procedure to extract
distributional moments under the
normality assumption

Table 1 lists three different univariate spatial
association measures (global and local) not only
in a summation notion but in a matrix notion.
The latter is crucial to define the measures
compatible to the quadratic form.

A global spatial association measure should be

defined as ratio of quadratic forms:
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Table 1. Univariate Spatial Association Measures

Measures Summation notation Matrix notation
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Note: All the definitions of the local measures satisty the additivity requirement that the average value of local measures is equal

to the corresponding global measure.

.,
r— %TT; M

where & is a vector of deviants of a variable
denoted by a vector of y, i.e., each value
subtracted by mean, and T is a global spatial
proximity matrix, a normalized form of a spatial
weights matrix V. Equation (1) can be rewritten
by utilizing a particular projection matrix that is
defined as:

1 1 1
=% —= —u
) 11 1
n n n
M(l):I—*llT: 2
n :
1 1 1

This is a particular form of the projection matrix
that projects a dependent variable and
disturbances into a residual space that is

orthogonal to a design matrix X consisting of
independent variables (Tiefelsdorf, 2000, 16).
That is,

M=I1-XX"X)" X" 3

Since we focus on spatial association measures as
pattern describers, the design matrix is solely
composed of a vector of 1s resulting in (2). By
utilizing (2), equation (1) is transformed to:

_¥'MyTMyy

= y' My @
where §=M)y and M) is an idempotent,
symmetric matrix so that Mgy=MqMq).

Previous studies (Durbin and Watson, 1950;
1951; 1971; Henshaw, 1966; 1968) show that the
distributional properties of a spatial association
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measure defined as in (4) are given by a matrix
trace operation of M3)TM ) under an assumption
of independence among observations. Since a
trace operation of matrix products is indifferent to
the order of the product, computationally
MyHTM) is reduced to M)T. When M)T is
denoted by K, first four central moments are
given (Henshaw, 1966; 1968; Hepple, 1998;
Tiefelsdorf, 2000):

#1=E(F)=t;(_K1) 5-1)
pp=Var(1) =g =B ® - ()

(n—1)%(n+1)

{(n—1)%r (K*)—3(n—Dtr(K)tr (K +-2tr (K)*}
(n—1)*(n+1) (n+3)

H#3=8

(5-3)
12
M= (=14 (n+1) (n+3) (n+5)
{(n—1)%[4tr (KY) +tr(K»?%
—2(n—1)[8tr K)tr (K*) +tr (K)tr(K)?]
+(n—1)[24tr (KD tr (K)*+tr (K)*]
—12tr(K)* (5-4)

In order to use equations above, T matrix (thus V
matrix) should be symmetric. Skewness and
kurtosis from the moments are given respectively
by (Tiefelsdorf, 2000, 102):

31=(% -1
M2)?
B= :2 i ©-2)

This procedure also holds for local spatial
association measures as long as they are defined
a scale invariant ratio of quadratic forms as
demonstrated for local Moran’s I; (Tiefelsdorf,
1998; Boots and Tiefelsdorf, 2000).

_ ¥y Mo T"May

2 @
vy My

I';

T% is a particular form of a local spatial
proximity matrix derived from a global proximity
matrix. Again, the matrix should be symmetric. As
will be seen in the next section, spatial
association measures are differentiated solely by

the spatial proximity matrix.

2) Applications to univariate spatial
association measures

Table 2 summarizes the definition of the global
spatial proximity matrix T for the three global
univariate spatial association measures, Moran’s I,
Geary’s ¢, and Lee’s S. Practically, a matrix of T is
defined as a standardized form of a spatial
weights matrix V. For example, when a row-
standardized spatial weights matrix W is applied,
T for Moran’s I becomes identical to V. Since T
(thus V) should be symmetric in order to use
equations (5-1)~(5-4), it may be necessary for
some non-symmetric spatial weights matrices
such as W to be transformed according to an

equation:
%(V—I—VT) ®

The Q matrix for Geary’s ¢ should be further
elaborated. According to Cliff and Ord (1981,
167), it is defined:

wi;= %;(UZ‘]“F U]‘i) (9)

Simply the matrix is a diagonal matrix with row-
sums when a spatial weight matrix is transformed
symmetric.

Table 3 summarizes the definition of the local
spatial proximity matrices T for the three local

univariate spatial association measures. A local
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Table 2. Definitions of global spatial proximity matrix T for global spatial association measures

Measures Equations T

Moran’s [ 17211 3;]; nlli‘\[]l
Geary’s ¢ ?{;}i w —1) (S};]Y)
Lee’s #V;\l/)l w n%

spatial weights matrix V; is defined as a global
spatial weights matrix whose elements are set to

zeroes except for entries in ith row (Lee, 2008):

0
Vi=|vi = vy vin‘| 10)

Even though V; does not have to be symmetric in
calculating a local measure, it should be
transformed symmetric in order to calculate
distributional moments. When M ;)T is denoted
by K, the equations (5-1)~(5-4) compute first four
moments at each location.

The local spatial weights matrix for local

Geary’s ¢; should be elaborated, because a local
spatial proximity matrix cannot be directly
derived from a global spatial proximity matrix
Q—V. Q; is a diagonal matrix of {v;1, =, v, ",
Vi) With vy being added by v, a row-sum at
each, V; is defined according to equation (10),
and diag(O operation transforms a vector to a
diagonal matrix. Thus, a local spatial weights

matrix for Geary’s ¢; is given (Lee, 2008):

va 0 —wa
0 - : 0
Q= VAV = —vi - Zjvy—vii - —0y
0 : “~ 0
Vi 0 vy

an

Table 3. Definitions of local spatial proximity matri T for local spatial association measures

Measures Matrix Notations
. 8TV
Moran's Equat L
oran’s [; quation Vi oo
. 2y,
T(z) nV;
1'V1
— 70— (V! T
Geary’s ¢; Equation nZ(?TV}) o1, ggrvl )10
0 n(n—1) [Q,—V,+VD)]
2 1'V1
) 2 8T (VIV)6
Lee’s S; Equation _n L
S Si duatt TV 878
T(Z') nz(VzT Vz)
17(VTV)1
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4. An lllustration

For an experiment, I designed a spatial pattern
on a hypothetical space that is composed of 37
hexagons (Figure 1). The spatial pattern has a
mean of 1.838 and a variance of 0.514. I choose
three hexagons labeled respectively a, b, and ¢
each of which has different linkage degrees (6
neighbors for a, 4 for b, and 3 for ¢) and different
values (3 for a, 2 for b, and 1 for ¢). Two
different spatial weights matrices are built; a
binary connectivity matrix C for Moran’s and
Geary’s measures, and a row-standardized and
non-zero diagonal matrix W*, a row-standardized
version of C*, ones on the diagonal of a binary
contiguity matrix C for Lee’s measures.

Table 4 displays the distributional properties of
the three global measures under the normality
assumption. Moran’s I and Lee’s S are positively
skewed while Geary’s ¢ is negatively skewed.
The magnitude of skewness is not negligible for

Vanance: 0.514

1
I 2
 °
J |
} ’ Mean: 1.838 | \Tl\: j/x: | \\I/ T \\I/

Moran’s I and Lee’ S. The kurtosis of Lee’s S is
relatively high. However, the normal
approximation based on the first two moments is
acceptable for all the three global measures
particularly in situations where the sample size is
large enough.

Table 5 reports the distributional properties of
the three local measures under the normality
assumption. There are several things noted from
the table. First, the magnitude of variances are
positively related to local linkage degrees at
locations with C while negatively related with W*
which is correspondent to findings by Tiefelsdorf,
et al. (1999). Second, Geary’s ¢; and Lee’s S; are
positively skewed, while Moran’s 7; is negatively
skewed. Third, the magnitude of skewness for
Geary’s ¢; and Lee’s S; are not negligible at all.
Fourth, kurtosis for all the measures is extremely
high, most prominent for Lee’s S;. All these things
together dictate a restriction on the use of the

normal approximation for local measures.

Q

A
[ LT

R e .

Figure 1. A hypothetical spatial pattern

Table 4. Distributional properties of global spatial association measures

Gloabl Measures Values Expectation Variance Skewness Kurtosis
Moran’s 0.3092 -0.0278 0.0094 0.3362 3.1093
Geary’s ¢ 0.6202 1 0.0123 -0.1289 2.9760
Lee’s § 0.4361 0.1560 0.0030 0.8011 3.8587
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Table 5. Distributional properties of local spatial association measures

Local Measures Locations Values Expectation Variance Skewness Kurtosis
a 2.3102 -0.0343 0.2097 -0.3819 7.4186

Moran’s I; b -0.0228 -0.0228 0.1472 -0.3029 7.3852
0.5069 -0.0171 0.1137 -0.2587 7.3698

a 0.3889 1.2333 1.0007 2.1945 10.1688

Geary’s ¢; 0.1945 0.8222 0.5248 2.1449 9.8045
0.1945 0.6167 0.3402 21393 9.7771

a 1.4938 0.1190 0.0261 25051 11.6792

Lee’s §; b 0.0028 0.1778 0.0582 2.5051 11.6792
0.6720 0.2292 0.0967 25051 11.6792

5. Concluding Remarks

The main objective of this paper was to
formulate a generalized procedure to extract the
first four moments of univariate spatial
association measures for statistical testing under
the normality assumption and to evaluate the
viability of hypothesis testing based on the
normal approximation for each of the spatial
association measures. The main results are as
follows. First, a generalized moment extraction
procedure under the normality assumption was
derived for both global and local measures.
When necessary matrices are defined in an
appropriate way for each of the measures, the
generalized method effectively yields the first four
moments of sampling distribution. Second, the
normal approximation based on the first two
moments for the global measures turned out to
be acceptable, while the notion did not appear to
hold to the same extent for their local
counterparts.

It should be noted that the procedure here can
embrace any way of defining the spatial
relationships among observations such that it is
not bothered by a spatial proximity matrix with
non-zero diagonal elements, which has been a

fatal issue in the randomization approach as can

be seen from Lee (2004; 2008). The generalized
procedure presented in this paper will most
benefit those who obtain a spatial statistical
measure but suffer from inability to offer the
information on the distributional properties of the
measure.

This study should be extended to utilize the
higher moments. There might be several options.
First, the first three moments can be used to
apply a Pearson Type III (gamma) function for a
more reliable inferential test (Costanzo et al.,
1983). With the first four moments (skewness and
kurtosis), a beta distribution can be fitted for a
nearly exact testing (Hepple, 1998).
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