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A Generalized Procedure to Extract Higher Order Moments of
Univariate Spatial Association Measures for Statistical Testing

under the Normality Assumption
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일변량공간연관성측도의통계적검정을위한일반화된고차적률추출절차: 
정규성가정의경우

이상일*

Abstract：The main objective of this paper is to formulate a generalized procedure to extract the first four moments of

univariate spatial association measures for statistical testing under the normality assumption and to evaluate the viability

of hypothesis testing based on the normal approximation for each of the spatial association measures. The main results

are as follows. First, predicated on the previous works, a generalized procedure under the normality assumption was

derived for both global and local measures. When necessary matrices are appropriately defined for each of the

measures, the generalized procedure effectively yields not only expectation and variance but skewness and kurtosis.

Second, the normal approximation based on the first two moments for the global measures turned out to be

acceptable, while the notion did not appear to hold to the same extent for their local counterparts mainly due to the

large magnitude of skewness and kurtosis. 

Key Words : spatial autocorrelation, spatial association measures, normality assumption, Moran’s statistics, Geary’s

statistics

요약：이논문의주요목적은정규성가정하에일변량공간연관성측도의첫번째네적률을구해내는일반화된추출절차를정식

화하고, 그것을바탕으로각측도의가설검정을위해정규근사가갖는가능성과한계를평가하는것이다. 중요연구결과는다음과

같다. 첫째, 이전의 연구에 기반함으로써, 정규성 가정 하에 전역적 측도와 국지적 측도에 모두 적용될 수 있는 일반화된 적률 추출

절차가도출되었다. 개별공간연관성측도를위한필수적인메트릭스가적절히정의되었을때, 일반화된유의성검정방법은각공

간연관성측도의기대값과분산은물론첨도와왜도를효과적으로산출하였다. 둘째, 첫번째두적률에근거한정규근사방법은전

역적통계량에대해서는유효한것으로판명되었지만, 국지적통계량에대해서는매우높은왜도와첨도로말미암아그유효성이현

저히떨어지는것으로드러났다.

주요어 : 공간적자기상관, 공간연관성측도, 정규성가정, 모란통계량, 기어리통계량
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1. Introduction

It has been well acknowledged that the use of

Moran’s I as a global spatial association measure

to parameterize the spatial clustering in a

geographical pattern is a special case of its more

general use for assessing spatial autocorrelation

among regression residuals with an assumption

that unobservable disturbances are independent

identically normal distributed (Cliff and Ord,

1981; Upton and Fingleton, 1985; Anselin, 1988;

Tiefelsdorf and Boots, 1995). Distributional

properties of the measure including higher

moments under the assumption of spatial

independence have been examined (Henshaw,

1966; 1968; Hepple, 1998; Tiefelsdorf, 2000).

Further, an exact distribution approach has

demonstrated its superiority over the

approximation approach (Tiefelsdorf and Boots,

1995; Hepple, 1998; Leung et al., 2003) and its

ability to embrace the conditional moments

(Tiefelsdorf, 1998; 2000).

This paper is concerned with formulating a

general procedure to generate the first four

moments of spatial association measures. This is

based on a rationale that the moment extraction

procedure developed for Moran’s I can be

extended not only to other univariate spatial

association measures as suggested for Geary’s c

(Cliff and Ord, 1981; Hepple, 1998), but also to

local measures as applied to local Moran’s Ii

(Boots and Tiefelsdorf, 2000), as far as a measure

can be defined as scale invariant ratio of

quadratic forms of residuals (Tiefelsdorf, 2000).

Since spatial association measures are seen as

ratio of quadratic forms of deviants from an

overall mean, resulting distributional moments

correspond to those extracted under the

normality assumption (Cliff and Ord, 1981, 21).

Subsequently, I first elaborate the need for a

generalized approach to hypothesis testing for

spatial association measures. Second, I provide a

generalized procedure to generate the first four

moments of spatial association measures under

the normality assumption and apply the

generalized procedure to six different univariate

spatial association measures such as global

Moran’s I, local Moran’s Ii , global Geary’s c, local

Geary’s ci , global Lee’s S and local Lee’s Si . For a

more detailed description of Lee’s measures, see

some previous works done by Lee (2001; 2004;

2008). It will be demonstrated that all the

measures are expressed as ratio of quadratic

forms of deviants from an overall mean, and that

only difference occurs in defining spatial

proximity matrices. Third, the computational

results in a hypothetical space are illustrated and

the viability of the normal approximation based

on the first two moments is examined.

2. A Generalized Approach to

Hypothesis Testing

1) Need for a generalized procedure for

statistical testing

I contend that there has been a lack of

generality in conducting significance testing for

spatial association measures. First, little attention

has been dedicated to the connection between

global and local measures with a few exceptions

(Tiefelsdorf, 1998; Tiefelsdorf, 2000; Boots and

Tiefelsdorf, 2000; Lee, 2004; 2008). Second,

investigating distributional properties has never

been undertaken for bivariate spatial association

measures (for exceptions, see Lee, 2004; 2008).

Third, existing procedures are confined to a

particular type of spatial weights matrix, that is,

one with a zero-diagonal. Thus, in the context of

univariate spatial association measures, we need

a generalized significance testing procedure
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which different measures, whether global or

local, are commonly predicated on with different

spatial settings, whether zero-diagonal spatial

weights matrices or not.

Even though significance testing is confirmatory

in nature, I argue that well-founded significance

testing is necessary for exploratory spatial data

analysis (ESDA). Pattern detection using spatial

association measures will be theoretically more

meaningful and practically more efficient if it is

guided by a statistical procedure. In the context

of global spatial association measures,

significance testing allows researchers to report

the overall degree of spatial dependence in a

probabilistic fashion. It is more crucial when

different spatial patterns are compared to assess

which ones are more spatially dependent with a

statistical confidence. In the context of local

spatial association measures, the task of exploring

mapped local spatial statistics will be enhanced

when they are in conjunction with their p-values.

For example, a spatial pattern would be more

obvious when only observations with a certain

level of significance are displayed. 

2) Different significance testing methods 

Significance testing for spatial association

measures can be categorized into three different

approaches: (i) approximation (normality and

randomization assumptions); (ii) exact

distribution; (iii) simulation. The approximation

approach is further divided into two classes in

terms of whether a population distribution is

assumed normal or not. If observed sample

values are assumed to be random independent

drawings from one normal population, the

normality assumption applies to provide the first

two moments (Cliff and Ord, 1981). Even though

Henshaw (1966; 1968), inspired by Durbin and

Watson (1950; 1951), provides a general

procedure to compute the first four moments

under the normality assumption, its use has been

confined to global Moran’s I (Hepple, 1998) and

the selected local measures (Leung et al., 2003). 

It should be noted that it is very often

unsustainable to assume a normal distribution of

a population that samples are drawn from. In

addition, it would be more intuitive to regard

observed sample values as a particular realization

of all possible spatial patterns with the sample,

than as one out of an infinite number of

numerical vectors with the same mean and

variance. This leads to the randomization

assumption. Cliff and Ord (1981) (also see Lee,

2008) contend that the randomization approach is

preferable either (i) when we consider all

possible permutations with a given data set, or

(ii) for any non-normal population. The second

issue is more crucial because variance computed

under the set of random permutations provides

an unbiased estimator for the variance of a

statistic for any underlying distribution (Cliff and

Ord, 1981, 42). And the randomization approach

is further divided into two distinctive assumptions

for local measures, total randomization and

conditional randomization (for a detailed

description, see Lee, 2008). 

Lee (2004; 2008) proposed two generalized

significance testing methods under the

randomization assumption, the extended Mantel

test and a generalized vector randomization test,

and demonstrated that the two methods can be

applied to any spatial association measures,

univariate or bivariate, global or local, under any

assumption, total or conditional randomization. It

should be noted, however, that “not all

permutations of regional values are equally likely

because permutations with atypically high or low

values in the periphery are more likely than

permutations with atypically high or low values

near the center (Rogerson, 2006, 237).” This is

more obvious when spatial autocorrelation in

regression residuals, because a test based on
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randomization assumption ignores

autocorrelation among explanatory variables so

that random permutations do not constitute an

appropriate reference set for testing regression

residuals (Cliff and Ord, 1981, 200).

The exact distribution approach (Tiefelsdorf

and Boots, 1995; Hepple, 1998) is superior to the

approximation approach in the sense that it can

deal with other aspects of a sampling distribution

(i.e., skewness and kurtosis). The normal

approximation with the first two moments on

which the approximation approach is usually

based often appears flawed even with a large

sample size (Siemiatycki, 1978; Mielke, 1979).

Moreover, even with higher moments, the

approximation does not always yield accurate

probability values (see Costanzo et al., 1983;

Hepple, 1998). The exact distribution approach is

parametric along with the approximation

approach based on normality assumption in the

sense that they are built on a particular

population distribution, that is, normal

distribution. In contrast, the approximation

approach based on the randomization

assumption is non-parametric simply it does not

assume any population distribution such that it is

a distribution-free testing method.

In spite of its superiority in an inferential test

for spatial association measures, the exact

distribution approach has some drawbacks. First

of all, the assumption of the normal distribution is

still required so that it may not work properly in

situations where a normality assumption is hardly

sustainable. Secondly, it is computational more

intensive in comparison with the normal

approximation, although other approximation

methods could alleviate the computational

burden substantially (see Tiefelsdorf, 2002; Leung

et al., 2003).

The simulation approach, including a Monte

Carlo test (Cliff and Ord, 1981, 63-65), can be

seen as supplementary to the approximation

approach. Two different simulation designs could

conform to the two approximation assumptions

above: if a number of numeric vectors with the

same mean and variance as a given sample are

randomly generated, a set of statistics will be

obtained for the normality assumption; in

contrast, if a number of different orders of a

given sample are permuted, a set of resulting

statistics conforms to the randomization

assumption. Although a Monte Carlo test could

provide more accurate p-values than the normal

approximation with first two moments, especially

when an abnormal skewness or kurtosis is

present, it is supplementary to the approximation

approach, as long as a set of equations for

distributional moments are known.

Some efforts have already been made to

provide a generalized procedure to extract higher

moments for spatial association measures under

the randomization assumption (e.g., Siemiatycki,

1978; Mielke, 1979; Hubert, 1984; 1987). Thus,

this paper follows the same line but under

different assumption for sampling distribution, the

normality assumption.

3. A Generalized Procedure for

Univariate Spatial Association

Measures

1) A generalized procedure to extract

distributional moments under the

normality assumption

Table 1 lists three different univariate spatial

association measures (global and local) not only

in a summation notion but in a matrix notion.

The latter is crucial to define the measures

compatible to the quadratic form.

A global spatial association measure should be

defined as ratio of quadratic forms:
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Г= (1)

where ∂ is a vector of deviants of a variable

denoted by a vector of y, i.e., each value

subtracted by mean, and T is a global spatial

proximity matrix, a normalized form of a spatial

weights matrix V. Equation (1) can be rewritten

by utilizing a particular projection matrix that is

defined as:

M(1)=I- 11T= (2)

This is a particular form of the projection matrix

that projects a dependent variable and

disturbances into a residual space that is

orthogonal to a design matrix X consisting of

independent variables (Tiefelsdorf, 2000, 16).

That is,

M=I-X(XTX)-1XT (3)

Since we focus on spatial association measures as

pattern describers, the design matrix is solely

composed of a vector of 1s resulting in (2). By

utilizing (2), equation (1) is transformed to:

Г= (4)

where ∂=M(1)y and M(1) is an idempotent,

symmetric matrix so that M(1)=M(1)M(1). 

Previous studies (Durbin and Watson, 1950;

1951; 1971; Henshaw, 1966; 1968) show that the

distributional properties of a spatial association

yTM(1)TM(1)y
yTM(1)y1

n

∂TT∂
∂T∂
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Table 1. Univariate Spatial Association Measures

Measures Summation notation Matrix notation

Note: All the definitions of the local measures satisfy the additivity requirement that the average value of local measures is equal

to the corresponding global measure.

Global

Moran

Geary

Lee

Global

Local

n
Ç
i 
Ç
j
vij

Ç
i 
Ç
j
vij(xi-x°)(xj-x°)

Ç
i 
(xi-x°)2

I=
(zX)TVzX

1VT1
I=

n2

Ç
i 
Ç
j
vij

Ç
j
vij(xi-x°)(xj-x°)

Ç
i 
(xi-x°)2

Ii=

n-1
2Ç

i 
Ç
j
vij

Ç
i 
Ç
j
vij(xi-xj)2

Ç
i 
(xi-x°)2

c=

n

Ç
i 
{Ç

j
vij}2

Ç
i 
{Ç

j
vij(xj-x°)}

2

Ç
i 
(xi-x°)2

S=

n-1
n

(zX)T(„-V)zX

1TV1c=

n(n-1)
2Ç

i 
Ç
j
vij

Ç
j
vij(xi-xj)2

Ç
i 
(xi-x°)2

ci= n-1
2

(zX)T[(„i-(Vi+Vi
T)]zX

1TV1
ci=

(zX)T(VTV)zX

1T(VTV)1
S=

n2

Ç
i 
{Ç

j
vij}2

{Ç
j
vij(xj-x°)}

2

Ç
i 
(xi-x°)2

Si=
(zX)T(Vi

TVi)zX

1T(VTV)1
Si=n

(zX)TVizX

1TV1
Ii=n

Local

Local

Global

1- - … -

- 1- -

- - … 1- 1
n

1
n

1
n

…

1
n

1
n

1
n

1
n

1
n

1
n

…
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measure defined as in (4) are given by a matrix

trace operation of M(1)TM(1) under an assumption

of independence among observations. Since a

trace operation of matrix products is indifferent to

the order of the product, computationally

M(1)TM(1) is reduced to M(1)T. When M(1)T is

denoted by K, first four central moments are

given (Henshaw, 1966; 1968; Hepple, 1998;

Tiefelsdorf, 2000):

µ1=E(Г)= (5-1)

µ2=Var(Г)=2 (5-2)

µ3=8

(5-3)

µ4=

{(n-1)3[4tr(K4)+tr(K2)2]

-2(n-1)2[8tr(K)tr(K3)+tr(K2)tr(K)2]

+(n-1)[24tr(K2)tr(K)2+tr(K)4]

-12tr(K)4} (5-4)

In order to use equations above, T matrix (thus V
matrix) should be symmetric. Skewness and

kurtosis from the moments are given respectively

by (Tiefelsdorf, 2000, 102):

∫1= (6-1)

∫2= (6-2)

This procedure also holds for local spatial

association measures as long as they are defined

a scale invariant ratio of quadratic forms as

demonstrated for local Moran’s Ii (Tiefelsdorf,

1998; Boots and Tiefelsdorf, 2000).

Гi= (7)

T(i) is a particular form of a local spatial

proximity matrix derived from a global proximity

matrix. Again, the matrix should be symmetric. As

will be seen in the next section, spatial

association measures are differentiated solely by

the spatial proximity matrix.

2) Applications to univariate spatial

association measures

Table 2 summarizes the definition of the global

spatial proximity matrix T for the three global

univariate spatial association measures, Moran’s I,

Geary’s c, and Lee’s S. Practically, a matrix of T is

defined as a standardized form of a spatial

weights matrix V. For example, when a row-

standardized spatial weights matrix W is applied,

T for Moran’s I becomes identical to V. Since T
(thus V) should be symmetric in order to use

equations (5-1)~(5-4), it may be necessary for

some non-symmetric spatial weights matrices

such as W to be transformed according to an

equation:

(V+VT) (8)

The „ matrix for Geary’s c should be further

elaborated. According to Cliff and Ord (1981,

167), it is defined:

∑ii= Ç
j
`(vij+vji) (9)

Simply the matrix is a diagonal matrix with row-

sums when a spatial weight matrix is transformed

symmetric. 

Table 3 summarizes the definition of the local

spatial proximity matrices T(i) for the three local

univariate spatial association measures. A local

1
2

1
2

yTM(1)T(i)M(1)y
yTM(1)y

µ4

(µ2)2

12
(n-1)4(n+1)(n+3)(n+5)

{(n-1)2tr(K3)-3(n-1)tr(K)tr(K2)+2tr(K)3}
(n-1)2(n+1)(n+3)

{(n-1)tr(K2)-tr(K)2}
(n-1)2(n+1)

tr(K)
n-1
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spatial weights matrix Vi is defined as a global

spatial weights matrix whose elements are set to

zeroes except for entries in ith row (Lee, 2008):

Vi= (10)

Even though Vi does not have to be symmetric in

calculating a local measure, it should be

transformed symmetric in order to calculate

distributional moments. When M(1)T(i) is denoted

by K, the equations (5-1)~(5-4) compute first four

moments at each location. 

The local spatial weights matrix for local

Geary’s ci should be elaborated, because a local

spatial proximity matrix cannot be directly

derived from a global spatial proximity matrix

„-V. „i is a diagonal matrix of {vi1, …, vii, …,

vin} with vii being added by Çjvij, a row-sum at

each, Vi is defined according to equation (10),

and diag() operation transforms a vector to a

diagonal matrix. Thus, a local spatial weights

matrix for Geary’s ci is given (Lee, 2008):

„i-(Vi+Vi
T)=

A Generalized Procedure to Extract Higher Order Moments of Univariate Spatial Association Measures 
for Statistical Testing under the Normality Assumption
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Table 2. Definitions of global spatial proximity matrix T for global spatial association measures

Measures Equations T

Moran’s I n

Geary’s c (n-1)

Lee’s S n (VTV)
1T(VTV)1

∂T(VTV)∂
∂T∂

n-1
1T(VTV)1

(„-V)
1TV1

∂T(„-V)∂
∂T∂

n-1
1TV1

V
1TV1

∂TV∂
∂T∂

n
1TV1

Table 3. Definitions of local spatial proximity matri T(i) for local spatial association measures

Measures Matrix Notations

Moran’s Ii Equation

T(i)

Geary’s ci Equation

T(i)

Lee’s Si Equation

T(i) n2(Vi
TVi)

1T(VTV)1

∂T(Vi
TVi)∂

∂T∂
n2

1T(VTV)1

[„i-(Vi+Vi
T)]

1TV1
n(n-1)

2

∂T[„i-(Vi+Vi
T)]∂

∂T∂
n(n-1)
21TV1

n2Vi

1TV1

∂TVi∂
∂T∂

n2

1TV1

(11)

0
vi1 … vii … vin

0

vi1 0 -vi1
0 0

-vi1 … Çjvij-vii … -vin
0 0

-vin 0 vin

…
……

…
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4. An Illustration

For an experiment, I designed a spatial pattern

on a hypothetical space that is composed of 37

hexagons (Figure 1). The spatial pattern has a

mean of 1.838 and a variance of 0.514. I choose

three hexagons labeled respectively a, b, and c

each of which has different linkage degrees (6

neighbors for a, 4 for b, and 3 for c) and different

values (3 for a, 2 for b, and 1 for c). Two

different spatial weights matrices are built; a

binary connectivity matrix C for Moran’s and

Geary’s measures, and a row-standardized and

non-zero diagonal matrix W*, a row-standardized

version of C*, ones on the diagonal of a binary

contiguity matrix C for Lee’s measures.

Table 4 displays the distributional properties of

the three global measures under the normality

assumption. Moran’s I and Lee’s S are positively

skewed while Geary’s c is negatively skewed.

The magnitude of skewness is not negligible for

Moran’s I and Lee’ S. The kurtosis of Lee’s S is

relatively high. However, the normal

approximation based on the first two moments is

acceptable for all the three global measures

particularly in situations where the sample size is

large enough. 

Table 5 reports the distributional properties of

the three local measures under the normality

assumption. There are several things noted from

the table. First, the magnitude of variances are

positively related to local linkage degrees at

locations with C while negatively related with W*,

which is correspondent to findings by Tiefelsdorf,

et al. (1999). Second, Geary’s ci and Lee’s Si are

positively skewed, while Moran’s Ii is negatively

skewed. Third, the magnitude of skewness for

Geary’s ci and Lee’s Si are not negligible at all.

Fourth, kurtosis for all the measures is extremely

high, most prominent for Lee’s Si. All these things

together dictate a restriction on the use of the

normal approximation for local measures. 
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Figure 1. A hypothetical spatial pattern

Table 4. Distributional properties of global spatial association measures

Gloabl Measures Values Expectation Variance Skewness Kurtosis

Moran’s I 0.3092 -0.0278 0.0094 0.3362 3.1093

Geary’s c 0.6202 1 0.0123 -0.1289 2.9760

Lee’s S 0.4361 0.1560 0.0030 0.8011 3.8587
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5. Concluding Remarks

The main objective of this paper was to

formulate a generalized procedure to extract the

first four moments of univariate spatial

association measures for statistical testing under

the normality assumption and to evaluate the

viability of hypothesis testing based on the

normal approximation for each of the spatial

association measures. The main results are as

follows. First, a generalized moment extraction

procedure under the normality assumption was

derived for both global and local measures.

When necessary matrices are defined in an

appropriate way for each of the measures, the

generalized method effectively yields the first four

moments of sampling distribution. Second, the

normal approximation based on the first two

moments for the global measures turned out to

be acceptable, while the notion did not appear to

hold to the same extent for their local

counterparts. 

It should be noted that the procedure here can

embrace any way of defining the spatial

relationships among observations such that it is

not bothered by a spatial proximity matrix with

non-zero diagonal elements, which has been a

fatal issue in the randomization approach as can

be seen from Lee (2004; 2008). The generalized

procedure presented in this paper will most

benefit those who obtain a spatial statistical

measure but suffer from inability to offer the

information on the distributional properties of the

measure. 

This study should be extended to utilize the

higher moments. There might be several options.

First, the first three moments can be used to

apply a Pearson Type III (gamma) function for a

more reliable inferential test (Costanzo et al.,

1983). With the first four moments (skewness and

kurtosis), a beta distribution can be fitted for a

nearly exact testing (Hepple, 1998). 
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