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ABSTRACT 

 

 

This study is concerned with developing new spatial association measures 

(SAMs), elaborating generalized significance testing methods, and proposing associated 

graphical and mapping techniques for an ESDA-GIS (Exploratory Spatial Data Analysis-

Geographic Information Systems) framework, which is defined as a GIS-based research 

platform equipped with various ESDA techniques.  It is argued that SAMs play a central 

role in obtaining a seamless integration between ESDA and GIS where the cross-

fertilization between them is highly achieved in such a way that ESDA takes advantage 

of GIS’s data manipulation and visualization capabilities and a GIS utilizes ESDA’s 

conceptual integrity and computational efficiency.   

Two sets of new SAMs are developed: global S and local Si as univariate SAMs, 

and global L and local Li as bivariate SAMs.  Global S, spatial smoothing scalar, captures 

the degree of spatial smoothing when a geographical variable is transformed to its 

spatially smoothed vector in which each observation is re-computed in conjunction with 

its neighbors as defined in a spatial weights matrix.  If a spatial pattern is more spatially 

clustered, it is given a higher value of S.  Local Si, defined as an observation’s relative 

contribution to the corresponding global S, allows a research to detect spatial clusters 

with effectively avoiding the tyranny of reference observations.    
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Global L and local Li are devised to conform to two concepts of association 

involved in comparing two spatial patterns in a simultaneous fashion: pairwise point-to-

point association and univariate spatial association.  Whereas aspatial bivariate 

association measure such as Pearson’s correlation coefficient is dedicated solely to the 

first type of association, global L has the numerical co-variance conditioned by the 

topological relationships among observations to parameterize the bivariate spatial 

dependence and to calibrate the degree of spatial co-patterning.  Local Li, a localized 

spatial correlation, captures the degree to which each location conforms to or is deviated 

from the corresponding global L, and allows for exploring the spatial heterogeneity in a 

bivariate relation.   

 Two sets of generalized significance testing methods are elaborated: one based on 

the normality assumption and the other on the randomization assumption.  It is 

demonstrated that a transformation of SAMs to ratio of quadratic forms allows for an 

inferential test for global and local univariate SAMs including S and Si under the 

normality assumption.  The Extended Mantel Test and the generalized vector 

randomization test are elaborated to compute first two moments under the randomization 

assumption.  It is evidenced that the devised randomization test procedures can be applied 

to all the SAMs, whether global or local, whether univariate or bivariate, or whether a 

zero-diagonal in a spatial weights matrix or not.     

 A new set of ESDA techniques utilizing SAMs are proposed and its usefulness in 

geographical inquiries is illustrated with a hypothetical data set.  For univariate situations, 

local-S significance map and Geary significance map are devised in comparison with the 
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preexisting Moran significance map.  For bivariate situations, local-L and local-r maps, 

local-L and local-r scatterplots, and local-L and local-r significance maps are proposed.  

 The ESDA techniques are applied to an empirical study on spatio-temporal 

dynamics of regional income distribution across the US labor market areas.  A series of 

local-S significance maps evidence the presence of spatial dependence in spatial 

distributions of per capital personal incomes and show a spatial disintegration within 

traditional industrial cores.  Local-L and local-r maps between 1969 and 1999 regional 

income distribution reveal a significant level of spatial heterogeneity across the US 

LMAs (Labor Market Areas).  It is argued that studies based on the notion of σ-

convergence should be edified by a temporal trend of global univariate SAMs.  A local-L 

significance map shows that there is a substantive level of spatial heterogeneity in β-

convergence. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Problem Specifications and Research Purposes 

 

Recent advances in spatial data analysis (SDA) or spatial statistics have attracted 

considerable attention from academic fields dealing with geographically referenced data 

(for overviews, see Fischer 1999; Getis 1999; Goodchild & Longley 1999; Fotheringham 

et al. 2000).  SDA appreciates the particular nature of spatial data and attempts to 

spatialize general statistics by recognizing that uniform statistical assumptions seldom 

hold for spatial data.  For example, data points in geographically referenced data sets are 

rarely independent from one another (spatial dependence), and spatial distributions often 

display significant local variations resulting in the presence of discrete spatial regimes 

within a study area (spatial heterogeneity).  Technological advances in computer and 

information sciences have dramatically changed the geocomputational environment for 

SDA (Openshaw & Clarke 1996; Openshaw and Alvanides 1999), and the development 

and maturation of GIS (Geographical Information Systems) as an informational 

 1 



technology exclusively for spatial data have allowed researchers to manage massive 

spatial data and analyze them with high-performing functionalities (Goodchild 1996; 

Goodchild and Longley 1999).   

Need for an integration of GIS and SDA have increasingly been recognized, 

theoretical and technical issues regarding that matter have been discussed (among others, 

Goodchild 1987; Openshaw 1990; Anselin 1992; Fotheringham 1991; Fischer & Nijkamp 

1992; Goodchild et al. 1992; Anselin and Getis 1993; Fotheringham and Rogerson 1993; 

Griffith 1993; Bailey 1994; Haining 1994), and a variety of analytical platforms 

(including commercial packages, e.g. SpaceStat for ArcView and S-Plus Extension for 

ArcView) have been produced.   Further, a widespread emphasis on the visual in 

analytical sciences overall and related technological advances in visual sciences have 

precipitated SDA to adopt and develop tools for scientific visualization (Fotheringham 

1999; Wise et al. 1999) and cartographic visualization (Kraak & Ormeling 1996; Dykes 

1996; 1997; 1998; Kraak 1999; Kraak & MacEachren 1999).  More importantly, the 

advent and development of EDA (Exploratory Data Analysis) (Tukey 1977; Good 1983; 

Cleveland 1993) as a new paradigm in statistics and its introduction to SDA (Jones 1984; 

Sibley 1987; Anselin 1988; Monmonier 1989; Bailey 1990; Haslett et al. 1990; 

Wartenberg 1990), and significant advances in local statistics in SDA (Getis and Ord 

1996; Fotheringham 1997; Fotheringham and Brunsdon 1999) have collectively led to an 

enormous appreciation of ESDA (Exploratory Spatial Data Analysis) (Among others, 

Anselin & Getis 1992; MacDougall 1992; Anselin 1994; 1996; Anselin and Bao 1997; 

Majure and Cressie 1997; Symanzik et al. 1998; Anselin 1999). 
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This dissertation appreciates the importance of spatial association measures 

(SAMs) in an ESDA-GIS framework as a general research scheme for geographic 

information sciences.  SAMs are defined as descriptive statistics for a spatial pattern or a 

set of spatial patterns, and is divided into two categories, global SAMs and local SAMs.  

The former summarizes the degree of spatial dependence in an overall spatial pattern or a 

relation among spatial patterns, the latter gauges the extent to which a locale conforms to 

the overall global trend.  For example, spatial autocorrelation as a univariate global SAM 

parameterizes the degree of the univariate spatial dependence by capturing how 

(dis)similar a value in a location is to those in neighboring locations.  Local spatial 

autocorrelation as univariate local SAMs, when mapped, reveals the spatial heterogeneity 

indicating that spatial dependence varies locale to locale.  In this respect, recent 

achievements in developing local univariate spatial association measures need to be 

appreciated.  Getis and Ord (Getis 1991; Getis and Ord 1992; Ord and Getis 1995) 

developed a set of local measures (Gi and Gi*).  Anselin (1995; 1996) decomposed two 

global measures into respectively corresponding local measures, local Moran’s Ii and 

local Geary’s ci, and devised related graphical tools, such as local scatterplot and map.  

This class of univariate local SAMs (LISA: Local Indicators of Spatial Association) has 

played a crucial role in the integration of ESDA and GIS. 

These endeavors, however, remain far from completed.  First, with few 

exceptions, the general trend has focused on univariate spatial associations; techniques 

for bi- and multi-variate measures and related ESDA techniques have been given little 

attention (Fotheringham and Charlton 1994:322).  Accordingly, a full-fledged ESDA-GIS 

 3 



framework should be built on a hybrid research environment where different research 

dimensions (univariate, bivariate, and multivariate) of analyses are cross-fertilized and 

fused into an integrative analytical framework.   

Second, more efforts should be dedicated to devising local SAMs and to 

decomposing existing global techniques.  Although it is obviously discouraging to face a 

historical fact (Unwin 1996:392) that almost a half-century has passed from global 

Moran’s I (1948) to its local version (Anselin 1995), rapid developments in 

geocomputation are expected to provide a better embryo sac for local statistics.  This 

should be initiated by making a clear distinction between truly spatial measures and 

pseudo- or quasi-spatial ones, such as z-scores, OLS residuals, and factor scores: they 

may be still spatial in a certain sense, but not be exhaustively spatial because they are 

computed without any information on spatial relationships among observations.  Further, 

ways of spatializing those aspatial measures should be devised.   

Third, it should be recognized that, albeit the development of LISA, its 

applications have been limited at a large extent especially in geography.  As Brown 

(2000) correctly pointed out, more substantive research based on ESDA using local 

statistics should be conducted, thus conveying a ‘demonstration effect’. 

Thus, main research purposes are threefold.   

First, this research develops two sets of SAMs: one set consisting of a univariate 

global SAM S and local SAM Si; the other set composed of a bivariate global SAM L and 

local SAM Li.  The development of the former is motivated by the fact that current 

univariate SAMs, such as Moran’s I and Geary’s c, are largely determined by reference 

 4 



areas so that a new measure needs to be introduced to capture the degree of the spatial 

dependence pronounced over entire locales.  The latter is expected to provide a new 

insight into bivariate spatial dependence and heterogeneity since similar local correlations 

are often spatially clustered and the degree of the spatial correspondence could vary 

locale to locale.  For each measure, some ESDA techniques including graphical and 

mapping procedures are illustrated. 

Second, the research provides two sets of generalized significance testing 

methods for SAMs: one set based on the normality assumption and the other on the 

randomization assumption that is composed of two different procedures, the Extended 

Mantel Test and a vector randomization test.  Whereas the former is confined to local 

SAMs, the latter is extended to bivariate SAMs.  It is demonstrated that those generalized 

statistical tests are applicable to any spatial weights matrices. 

Third, measures and associated ESDA techniques along with other spatial 

statistical techniques such as spatial autoregressive models and geographically weighted 

regression methods, are applied to an empirical study on spatio-temporal dynamics in 

regional income convergence across U.S. labor market areas (LMAs) between two years 

1970 and 1990. 

 

1.2 Structure of the Dissertation 
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Figure 1-1 summarizes the structure of this dissertation.  The dissertation is 

largely divided into three sections: the first section with Chapter 1 and 2; the second 

section from Chapter 3 to Chapter 6; the third section with Chapter 7, 8, and 9.   

In the first section, Chapter 2 provides a conceptual overview on roles of SAMs 

for an ESDA-GIS framework.  The nature of spatial data is formulated in terms of three 

associated concepts, spatial scale, spatial dependence, and spatial heterogeneity.  These 

concepts underlie the rationales for SAMs.  Finally, a SAM-based ESDA-GIS framework 

is formulated. 

In the second section, Chapter 3 and 4 address the development of new SAMs, S 

and Si, and L and Li.  Chapter 5 and 6 are dedicated to the development of generalized 

significance testing methods based on the normality assumption and the randomization 

assumption.  For each chapter, a general procedure is first provided and then is applied to 

various SAMs.   

The third section illustrates ESDA techniques using local SAMs (Chapter 7) and 

their applications, with other spatial statistical techniques, to spatio-temporal income 

dynamics across the U.S. 391 labor market areas, 1969-1999 (Chapter 8).  The final 

chapter discusses related issues and future research themes (Chapter 9).   
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CHAPTER 2 

 

 

2SPATIAL ASSOCIATION MEASURES AND AN ESDA-GIS FRAMEWORK 
 

 

 This chapter reviews the current status of spatial association measures (SAMs) 

with respect to overall spatial data analysis (SDA) and formulates a SAM-based ESDA-

GIS framework.  I first clarify that the nature of spatial data necessitates the development 

of SAMs.  Second, I demonstrate that generalized statistical tests are needed for SAMs 

and are necessary for ESDA.  Third, I formulate a SAM-based ESDA-GIS framework.    

 

2.1 Nature of spatial data and spatial association measures 

 

Spatial statistics or spatial data analysis is not simply a bundle of methods or 

statistical techniques, but is a new perspective on geographically referenced data with a 

theoretical integrity centered on space.  Spatial patterns are assumed to be underlain by 

spatial processes that can be seen as numerical or statistical abstractions of real socio-

economic processes deploying through space.  Those spatial processes may include 

spatial diffusion, spatial exchange (e.g., spillover and externalities), spatial interaction, 
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and spatial dispersal or relocation (Haining 1990:24-25).  Resulting spatial patterns may 

be seen as particular interactions among those spatial processes, and should be analyzed 

based on proper assumptions on those processes, that is, certain spatial stochastic 

processes. 

Applications of general statistical techniques to spatial data, from ANOVA to 

multivariate regression, may be flawed because they are based on aspatial statistical 

assumptions on underlying processes.  For example, properties for hypothesis testing in 

regression analyses, t-test for parameter estimators and F-test for overall goodness-of-fit 

of a regression equation, may not be dependable due to the very nature of spatial data.  

The relationship between general statistics and spatial statistics is similar to that between 

aspatial political economy and spatially informed critical social sciences (e.g. Lobao et al. 

(1999) show a good example of spatially informed Social Structures of Accumulation 

(SSA) approach).  Further, a ‘global’ or ‘average’ estimation (e.g. a single set of 

regression parameters) does not apply equally to all parts of the whole study area, 

because statistical relationships vary sub-region to sub-region (Brown and Jones 1985; 

Brown 1991).  For example, a positive relationship between two variables may be 

reversed in certain sub-regions. Estimating localized parameters has increasingly been a 

crucial part of spatial statistics.   

Although spatial statistics has been introduced to social science under the banner 

of spatial data analysis or spatial econometrics (Anselin 1988), its scope is much broader 

to include geostatistics, environmetrics, biostatistics, and so on.  I give a brief 

introduction to spatial statistics, focusing on quantitative geography and its evolution to 
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spatial statistics.  Rationales for spatial statistics are associated with the appreciation of 

‘spatial effects’ differentiating spatially referenced data from general data, such as scale 

effect, spatial dependence, and spatial heterogeneity, and the recognition of those spatial 

effects in the discipline of statistics was responsible for much of early spatial statistics 

(Gehlke and Biehl 1934; Moran 1948; Geary 1954; Krishna Iyer 1949).   

According to Anselin and Griffith (1988), the real exposure of regional science 

and geography to spatial statistics was achieved by the work of Cliff and Ord (1973; 

revised in 1981), which Getis (1999:241) regards as having opened “the door to a new era 

in spatial statistics”.   What makes the book really important is the fact that it enhanced 

spatial data analysis or quantitative geography qualitatively from a simple application of 

general statistical techniques to spatial data (this include some ‘for geographers’-type 

books; e.g. Ebdon 1977; Johnston 1978; Clark and Hosking 1985; Rogerson 2001) or a 

descriptive or semi-inferential level (for a review on this level of spatial data analysis, 

Unwin 1981; Gatrell 1983) to a full-fledged inferential level.  The trend was fully 

adopted in a bible of quantitative geography (Haggett et al 1977), and gave birth to 

several seminal books for spatial statistics (Upton and Fingleton 1985; 1989; Anselin 

1988; Griffith 1988; Haining 1990; Cressie 1993; Bailey and Gatrell 1995; Tiefelsdorf 

2000; Fotheringham et al. 2000), with being inspired by statisticians (Ripley 1981; 1988; 

Silverman 1986; Cressie 1993) and geostatisticians (Isaaks and Srivastava 1989).  I will 

try to demonstrate the importance of spatial statistics by examining each of its conceptual 

elements; (i) spatial scale; (ii) spatial dependence; (iii) spatial heterogeneity and local 

statistics. 
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2.1.1 Spatial scale 

Spatial scale implies three different things:  geographical scale means the spatial 

extent of the whole study area; observational scale denotes the physical size of the spatial 

unit of a study; operational scale refers to the spatial extent to which a phenomenon 

underlain by a process operates.  The relationship between spatial unit and operational 

scale is crucial because a mismatch between them may generate flawed results.  For 

example, many of state-based regional analyses on economic performance variables in 

the context of U.S. are not of much intuition, because processes such as spatial 

interaction, spatial externalities, neighborhood effects, and other spillover effects, 

underlying the spatial variations in economic performance, may occur in intra-state 

spatial scale and, in some parts over the study region, across the state boundary.  

Accordingly, attempts to delineate commuting zones or functional regions more 

accurately (Cromartie and Swanson 1996; Morrill et al 1999; compare them with a Ghelfi 

and Parker 1997) obviously conform to the fact that commuting as a spatial process 

operates at a finer level than a county.   

Study region, spatial unit, and operational spatial scale collectively dictate a 

spatial setting for a research in an interactive manner.  What is more important, however, 

is the fact that different spatial settings may draw different results from the same data.  

The concept of scale dependency captures the situation that numerical or statistical 

properties of a spatial phenomenon vary with the geographical scale at which it is 

represented and analyzed.  A significant spatial pattern at one geographical scale may 
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evaporate or even disappear at another.  Further, statistical relationships among variables 

in one spatial scale could become greater, lesser, or even reversed at other spatial scales.  

All these spatial effects fall under the ‘modifiable areal unit problems (MAUP)’.   

Although MAUP was coined by Openshaw and Taylor (1979), its effects have 

long been recognized (Gehlke and Biehl 1934).  The crux of MAUP is contained in its 

name.  As Holt et al. (1996:181) point out, “the spatial areas are termed modifiable 

because the choice of area boundaries and the number of areas used to cover the 

population are not fundamental and other choices could have been made.”  Thus, the 

MAUP can be seen as pointing to “the sensitivity of analytical results to the definition of 

units for which data are collected” (Fotheringham and Wong 1991:1025).  This, further, 

means that research results at a given spatial configuration are not decisive, but somewhat 

provisional, because the results could vary with the observational level (the scale effect) 

and with the configuration of the zoning system (the zoning effect or aggregation effect) 

(Openshaw 1984; Fotheringham and Wong 1991).  Although the scale effect is a most 

obvious manifestation of MAUP, the zoning effect also makes a significant contribution 

to MAUP, especially when raw spatial units are aggregated into the same or similar 

number of higher-order aggregates.   

Generally known MAUP effects are: as spatial aggregation proceeds from smaller 

spatial units to larger spatial units, (i) variance of a variable decreases (Fotheringham and 

Wong 1991; Wong 1996); (ii) correlation between two variables increases (Gehlke and 

Biehl 1934; Openshaw and Taylor 1979; Openshaw 1984; Fotheringham and Wong 

1991; Amrhein 1994; Wong 1996); (iii) coefficient of determination increases (Amrhein 
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1995; Wong 1996); and (iv) spatial autocorrelation decreases (Chou 1991; 1995; Anselin 

and Getis 1992).   

Researchers working on a regional analysis on a country, e.g. U.S., are often 

faced with questions in establishing a spatial setting for their research: what spatial unit 

should be used; at what spatial scale data are available; what kinds of aggregation 

schemes have been proposed.  The phenomenon having been set at regional economic 

performance, a viable spatial unit could be a regional labor market area where a vast 

majority of people live and work, and an intra-regional functional integration is 

distinctive at a large degree.  Using county as a raw spatial unit to construct a labor 

market area or functional region may be acceptable in the context of U.S.  Since it would 

be another research question to construct a new regionalization scheme, the next question 

might be what regionalization scheme should be ‘chosen’ among preexisting different 

functional regions.  

Lee (1999) investigated some aspects of the MAUP with county-based functional 

regions in the US.  He identified 17 functional regions available for research.  His results 

show that there are substantial differences in a variety of statistics among different 

regionalization schemes.  Given the situation that a spatial unit is dictated by data 

availability, how could we possible report research results with a considerable 

confidence?  Some efforts have been done to provide a way of finding the most adequate 

spatial aggregation level or spatial scale (Moellering and Tobler 1972; Openshaw 1977; 

Wrigley 1995).  However, a better way might be to apply statistical techniques less 

sensitive to MAUP to spatial data such that results are less variant among different spatial 
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scales and configurations.  The alternative may be spatial statistics.  Green and 

Flowerdew (1996) demonstrate that a certain form of a spatial autoregressive model is 

resistant to the effect of MAUP.   

What could cause MAUP?  A simple and general statistical answer is that, as 

spatial aggregation proceeds, a ‘smoothing effect’ happens so that the uniqueness of each 

area and dissimilarity among areas are reduced, and variance for the entire research area 

is suppressed (Fotheringham and Wong 1991; Wong 1996).  Reduced variance, then, 

leads to increases in correlation and goodness-of-fit of a regression equation.  However, a 

spatial statistical answer is different.  The effects of the MAUP occur because spatial 

data are usually characterized by ‘spatial dependence” which can be defined as the 

propensity for nearby locations to influence each other and possess similar attributes 

(Anselin 1988; Anselin and Griffith 1988; Anselin 1990; Haining 1990; Goodchild 1992; 

Anselin and Getis 1992).  If values are randomly distributed across space (spatial 

randomness), variance will never significantly change with any level or way of spatial 

aggregation.  Different spatial aggregations may result in different level of spatial 

dependence, differently being subject to MAUP’s effects.  Since spatial statistical 

methods are designed to deal effectively with the spatial dependence, they are much more 

resistant to the effects.  All these things lead us to the second conceptual element: spatial 

dependence. 

 

2.1.2 Spatial dependence 
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 It may be interesting observation that, even though spatial dependence is more 

complicated (multi-dimensional) and prompting than serial dependence (one-

dimensional), researchers dealing with spatial data seem less sensitive to the matter than 

ones with serial data (Anselin and Griffith 1988; Anselin 1990; Fotheringham 1993; 

Griffith 1993).  Spatial dependence is what ‘First Law of Geography’ (Tobler 1970:236) 

implies: “everything is related to everything else, but near things are more related than 

distant things.”  This spatial dependence is not exceptional in the context of 

geographically referenced data and obviously contradicts the usual assumption of 

independent observations in general statistics.  Spatial dependence results not only from 

intrinsic spatial processes such as spatial interaction, spatial externalities, and other 

spillover effects, but from mismatch between the scale of the spatial unit (observational 

scale) and the phenomenon of interest (operational scale) (Anselin and Griffith 1988; 

Anselin 1990; Anselin and Getis 1992). 

 At the heart of the problem lies the loss of information that an observation carries.   

When spatial dependence dominates, information from observations is less than would 

have been obtained from independent observations, because a certain amount of the 

information carried by each observation is duplicated by other observations in the cluster 

(Haining 1990:40-41; Anselin 1990).  This loss of information may invalidate some of 

statistical tests, because it lowers the effective number of degrees of freedom in a test 

(Goodchild 1996:244).  In the context of OLS regression, the presence of spatial 

autocorrelation misleads significance tests and measures of fit (Anselin and Griffith 

1988:16; Fotheringham and Rogerson 1993:11).  A statistically significant spatial 
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autocorrelation in OLS residuals could be caused by model misspecifications that one or 

more significant variables are missing (Getis 1999:241), but mostly it results from 

intrinsic properties of spatial data.   

 In the univariate context, spatial dependence of a mapped variable is usually 

captured by global univariate SAMs, more often known as spatial autocorrelation indices, 

such as Moran’s I and Geary’s c (Moran 1948; Geary 1954; Cliff and Ord 1981; 

Goodchild 1986; Griffith 1987; Odland 1988).  Both measure how (dis)similar neighbors 

as defined in a spatial weights matrix are in terms of single variable, simply capturing the 

level of spatial clustering of a variable.   

Researchers often use variance or the coefficient of variation to estimate the level 

of spatial disparity using concepts clearly invoking spatial clustering or dispersion, such 

as regional convergence and divergence.  In essence, however, numeric variance has 

nothing to do with spatial pattern, because a numeric vector with n observations of 

different values can generate n! different spatial patterns which have the same mean and 

variance, but are different in the level of spatial autocorrelation (Lee 2001).  The same 

problem occurs when the index of dissimilarity (ID) is used to measure spatial exclusion 

among socially defined groups.  Since there is no spatial element in the equation for ID, 

totally different spatial association between two groups have the same ID.  This problem 

has long been recognized, and efforts to devise spatial version of ID have been done (e.g., 

Morgan 1983; White 1983; Massey and Denton 1988; Morrill 1991; Wong 1993; 

Wardorf 1993; Chakravorty 1996; Lee and Culhane 1998).  Accordingly, other univariate 
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statistics should be modified to deal with spatial data, such as spatial ANOVA (Griffith 

1978; 1992) and the spatial chi-square test (Rogerson 1998; 1999). 

 In bivariate research, the same problem occurs.  Significance testing for Pearson’s 

correlation coefficients may be flawed if any of or both of the two variables are spatially 

autocorrelated (Bivand 1980; Richardson and Hemon 1981; Clifford and Richardson 

1985; Haining 1991).  It should be noted that the concept of ‘association’ means two 

things: (i) point-to-point association or pairwise association; (ii) spatial association 

among observations.  Pearson’s correlation coefficient only measures the first 

association, with an assumption of no spatial association among observations.  However, 

it is often found that similar point-to-point associations are spatially clustered, that is, 

bivariate spatial dependence.  Spatial dependence in association between two variables 

should reduce the degree of freedom, and thus the critical value for significance testing at 

any given confidence level should be adjusted higher in absolute values.  Another way to 

demonstrate bivariate spatial dependence is to indicate that, from a pair of numeric 

vectors with n observation, n! different pairs with the same Pearson’s r but different 

spatial associations can be drawn (Haining 1991).  We need a new spatial correlation 

coefficient which differentiates the n! associations by measuring both point-to-point 

association and spatial association. 

 In the multivariate situation, spatial dependence in residuals invalidates much 

significance testing for parameter estimators and goodness-of-fit.  A simple way to deal 

with multivariate spatial dependence might be to conduct a spatial filtering to eliminate 

the spatial dependence (Getis 1990; 1995; Griffith 2000).  A better or more suitable way, 
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however, is to fit a spatial autoregressive model (Upton and Fingleton 1985:347-366; 

Anselin 1988:32-39; Griffith 1988:17-19; Haining 1990:80-90; Bailey and Gatrell 

1995:282-289; Tiefelsdorf 2000:43-47).  This model cannot be directly fitted in matrix 

notions as in general OLS model, but requires more computationally demanding 

maximum likelihood estimation.  When a spatial autoregressive model is fitted, the 

spatial autocorrelation in residuals is usually eliminated and slightly modified set of 

regression parameters are derived.  For example, a commonly used spatial autoregressive 

model, simultaneous autoregressive (SAR) model or autocorrelated errors model, 

decomposes residuals into spatially autocorrelated errors and random disturbances with 

no spatial autocorrelation, and the former error elements are autoregressived iteratively to 

estimate a new set of regression parameters.  Even with a well-designed spatial 

autoregressive model, one might wonder if there is another way that allows regression 

parameters to vary spatially so as to explore spatial variations in multivariate 

relationships among variables under investigation.  This leads to the third conceptual 

element: spatial heterogeneity. 

 

2.1.3 Spatial heterogeneity 

 Spatial heterogeneity, or spatial non-stationarity, refers to geographical variations 

or differentiations of statistical properties of data, which results from intrinsic uniqueness 

of each point or sub-region (Anselin 1990; Fischer 1999).  The presence of spatial non-

stationarity invalidates the assumption that all observations in a sample are drawn 

randomly from the same population (Goodchild 1996).  More specifically, complete 
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spatial stationarity refers to a situation where means and standard deviations (univariate), 

covariances (bivariate), and multivariate parameters (multivariate) are constant from sub-

region to sub-region (Haining 1990; Getis and Ord 1996; Fotheringham 1997; Anselin 

1999).  Complete spatial stationarity or homogeneity is as rare as complete spatial non-

stationarity that indicates an absolute uniqueness of each observation.  Geographers 

usually find the entire study area divided into several segments or ‘spatial regimes’, each 

of which has a certain level of internal homogeneity and, at the same time, a particular 

level of external heterogeneity.  Detection of spatial regimes, therefore, appears similar to 

regional classification.  Since internal homogeneity is, in turn, associated with spatial 

dependence, spatial heterogeneity can be redefined as “a lack of spatial uniformity of the 

effects of spatial dependence and/or of the relationships between the variables under 

study” and can be thought of as “a special case of spatial dependence” (Anselin and Getis 

1992:24). 

 With this respect, most spatial statistical techniques so far depend upon an 

assumption of spatial stationarity or spatial homogeneity in the sense that they focus on 

deriving global or average statistics, rather than local or deviant statistics.  Recent 

advances in spatial statistics deal with spatial heterogeneity, resulting in a class of 

statistics called local statistics.   

 In the context of univariate spatial dependence, three local spatial autocorrelation 

indices have been articulated, Getis-Ord Gi and Gi* (Getis and Ord 1992; Ord and Getis 

1995), local Moran’s Ii, and Geary’s ci (Anselin 1995), and collectively construct a class 

of Local Indicators of Spatial Association (LISA) (Anselin 1995; Getis and Ord 1996).  
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Tiefelsdorf (1998) extends local Moran’s Ii further to embrace conditionality of the 

measure.  When local measures are mapped, you can see not only spatial variations in 

spatial clustering, but also the spatial extent of the process under investigation, that is, 

operational scale.  Further, a distinctive operational scale may help identify localities in 

terms of variables of interest (Unwin 1996).  LISA has been applied to a variety of 

research topics.  Among them, applications to regional economic analysis include: Bao et 

al 1995; Barkely et al 1995; Bernat 1996; Lopez-Bazo et al 1999; Rey and Montouri 

1999; Ying 2000.  

 In bivariate spatial heterogeneity, a localized spatial correlation index can be 

suggested.  A local spatial correlation index first indicates the relative contribution an 

individual area makes to a global spatial correlation index: it measures the degree to 

which an area conforms to a global trend in direction and magnitude of spatial association 

across two variables.  Second, it involves the degree of similarity between an area with its 

neighbors: areas more similar to their neighbors will be given higher local values than 

others dissimilar to their neighbors, with point-to-point association being identical. 

 Methods for multivariate heterogeneity have a relatively long history in 

comparison to other local statistics.  The spatial expansion method, allowing for spatially 

drifting regression parameters, was devised as early as the 1970s and applied to various 

research situations (Casetti 1972; Brown and Jones 1985; Brown 1991; Foster 1991; 

Jones and Casetti 1992; Jones and Hanham 1995; Casetti 1997; Casetti and Can 1999).  

Other approaches are considered in the same conceptual line, e.g., spatial adaptive 

filtering (Foster and Gorr 1986; Gorr and Olligschlaeger 1994), and spatial multilevel 
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modeling (Jones 1991a; 1991b; Ward and Dale 1992).  However, a full-fledged spatially 

varying regression analysis is by the geographically weighted regression (GWR) 

(Brunsdon et al. 1996; 1998a; 1998b; Fotheringham 1997a; 1997b; 1998; Leung et al 

1999).  At a glance, this approach is similar either to the weighted least squares (WLS) 

regression or to the kernel regression.  It is different from the former in the sense that 

weights matrices in WLS are constant across observations, and is different from the latter 

in the sense that weights matrices are based on spatial proximity (GWR), rather than 

numerical similarity (the kernel regression).  Also, GWR is different from spatial 

autoregressive models simply for producing localized parameter estimators.  When 

localized parameters for an explanatory variable are mapped, one may see the relative 

explanatory power of the variable over space.  When coefficients of determination are 

mapped, one can see that the goodness-of-fit of the specified model vary sub-region to 

sub-region. 

Spatial statistics provides a solid foundation on which spatial data are explored, 

analyzed, and represented.  Especially, local statistics have appeared in a revolutionary 

fashion.  With a univariate local statistics, one can test which labor market areas are 

significantly prosperous or lagged.  With a global spatial correlation index, one can gauge 

the extent to which socio-economic restructuring has been entailed by spatial 

restructuring.  With a local spatial correlation index, one can document with a certain 

level of statistical confidence on which labor market areas have experienced significant 

continuity or change in terms of economic performance during the regime changing 

period, 1970 to 1990.  With a local spatial regression model, one can examine how a 
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model designed to explain the spatial variation of economic performance spatially 

behaves over the whole study region in terms of different goodness-of-fit and different 

associations among variables.  Further, this may allow us to explore and visualize the 

spatial division of causality. 

 

2.2 Significance testing methods for spatial association measures 

 

2.2.1 Need for a generalized procedure and its role for ESDA 

 I contend there has been a lack of generality in conducting significance testing for 

SAMs.  First, little attention has been dedicated to the connection between global and 

local measures with the few exceptions of Tiefelsdorf and Boots 1997; Tiefelsdorf 1998; 

Tiefelsdorf 2000; Boots and Tiefelsdorf 2000.  Second, investigating distributional 

properties has never been undertaken for bivariate SAMs.  Third, existing procedures are 

confined to a particular type of spatial weights matrix, that is, one with a zero-diagonal.  

Thus, we need a generalized significance testing procedure which different measures, 

whether univariate or bivariate, are commonly predicated on with different spatial 

settings, whether zero-diagonal spatial weights matrices or not. 

 Even though significance testing is confirmatory in nature, I argue that well-

founded significance testing is necessary for ESDA.  First, pattern detection using SAMs 

will be theoretically more meaningful and practically more efficient if it is guided by a 

statistical procedure.  In the context of global SAMs, significance testing allows 

researchers to report the overall degree of spatial dependence in a probabilistic fashion.   
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It is more crucial when different spatial patterns are compared to assess which ones are 

more spatially dependent with a statistical confidence.  In the context of local SAMs, the 

task of exploring mapped local SAMs will be enhanced when they are in conjunction 

with p-values.   For example, a spatial pattern would be more obvious when only 

observations with a certain level of significance are displayed.   

The second reason that significance testing is necessary for ESDA lies in the fact 

that, as far as local SAMs are concerned, it should be considered to be exploratory in 

nature, because there are two crucial pitfalls.  First, an alpha-level for a global SAM 

should be lowered when it is applied to its local SAMs (Getis and Ord 1992; Anselin 

1995).  Even though some procedures such as a Bonferroni bounds procedure have been 

proposed, this problem has never been solved.  Second problem arises because 

significance testing procedures for local SAMs are indifferent to the global level of 

spatial dependence even though distributional properties change as levels of the global 

spatial dependence change as discussed (Anselin 1995; Ord and Getis 1995; Tiefelsdorf 

1998; Ord and Getis 2001).  To data, only the exact distribution approach can solve this 

problem, but only for local Moran’s Ii (Tiefelsdorf 1998; 2000).  These two problems 

collectively dictate a restriction on the use of local SAMs that they should be used in an 

exploratory manner, not in a confirmatory manner (Sokal et al. 1998). 

 

2.2.2 Different significance testing methods  

 Significance testing for spatial association measures can be categorized into three 

different approaches: (i) approximation (normality and randomization assumptions); (ii) 

 23 



exact distribution; (iii) permutation.  The approximation approach is further divided into 

two classes in terms of whether a population distribution is assumed normal or not.   If 

observed sample values are assumed to be random independent drawings from one 

normal population, the normality assumption applies to provide the first two moments 

(Cliff and Ord, 1981).  Even though Henshaw (1966; 1968), inspired by Durbin and 

Watson 1950; 1951), provides a general procedure to compute the first four moments 

under the normality assumption, its use has been confined to global Moran’s I (Hepple 

1998; Tiefelsdorf 2000) and local Moran’s Ii (Boots and Tiefelsdorf 2000) (see Table 

2.1).  In Chapter 5, I formulate a general procedure and apply to global Geary’s c, local 

Geary’s ci, a new global univariate SAM S, and its local version Si.   

It should be noted that it very often is not sustainable to assume a normal 

distribution of a population that samples are drawn from.  In addition, it would be more 

intuitive to regard observed sample values as a particular realization of all possible spatial 

patterns with the sample, than as one out of an infinite number of numerical vectors with 

the same mean and variance.  This leads to a randomization assumption.   Cliff and Ord 

(1981) contend that the randomization approach is preferable either (i) when we consider 

all possible permutations with a given data set, or (ii) for any non-normal population.  

The second issue is more crucial because variance computed under the set of random 

permutations provides an unbiased estimator for the variance of a statistic for any 

underlying distribution (Cliff and Ord, 1981, p. 42).  As can be seen from Table 2.1, the 

randomization approach is further divided into two distinctive assumptions for local 

SAMs, total randomization and conditional randomization.  In Chapter 6, I propose two  

 24 



 
Approximation Approach 

Randomization Assumption Univariate 
SAMs Normality 

Assumption Total Conditional 

Exact 
Distribution 
Approach 

Global Moran’s I Cliff and Ord 
(1981) 

Cliff and Ord 
(1981) N/A 

Tiefelsdorf and 
Boots (1995) 
Hepple (1998) 

Local Moran’s Ii 
Boots and 
Tiefelsdorf 
(2000) 

Anselin (1995) 
 

Sokal et al. 
(1998) 

Tiefelsdorf 
(1998; 2000) 

Global Geary’c  Cliff and Ord 
(1981) N/A  

Local Geary’ci  Sokal et al. 
(1998) 

Sokal et al. 
(1998)  

 
 
 
 

Table 2.1: Significance testing methods for univariate SAMs 

 25 



generalized randomization significance testing methods, the Extended Mantel Test and a 

generalized vector randomization test, and demonstrate that the two methods can be 

applied to any SAMs, univariate or bivariate, global or local, under any assumption, total 

or conditional randomization. 

 The exact distribution approach (Tiefelsdorf and Boots, 1995; Hepple, 1998) is 

superior to the approximation approach in the sense that it can deal with other aspects of 

a sampling distribution (i.e., skewness and kurtosis).   The normal approximation with the 

first two moments on which the approximation approach is usually based often appears 

flawed even with a large sample size (Siemiatycki, 1978; Mielke, 1979).  Moreover, even 

with higher moments, the approximation does not always yield accurate probability 

values (see Costanzo et al., 1983; Hepple 1998).   

Nevertheless, the exact distribution approach has some drawbacks.  First of all, 

the assumption of the normal distribution is still required.  Secondly, it is too 

computationally intensive to be easily implemented in a common research platform.  This 

is more crucial when the approach is applied to local measures.  Thirdly, the approach 

has a limited applicability because it is required that a statistic must be transformed to a 

simple quadratic form.  Therefore, it is irrelevant to bivariate measures.    

 The permutation approach, including a Monte Carlo test, can be seen as 

supplementary to the approximation approach.  Two different simulation designs could 

conform to the two approximation assumptions above: if a number of numeric vectors 

with the same mean and variance as a given sample are randomly generated, a set of 

statistics will be obtained for the normality assumption; in contrast, if a number of 
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different orders of a given sample are permuted, a set of resulting statistics conforms to 

the randomization assumption.  Although a Monte Carl test could provide more accurate 

p-values than the normal approximation with first two moments, especially when an 

abnormal skewness or kurtosis is present, it is supplementary to the approximation 

approach, as long as a set of equations for distributional moments are known. 

 

2.3 An ESDA-GIS framework and spatial association measures 

 

2.3.1 CSDA, ESDA, and GIS 

 SDA may be divided into three categories; exploratory spatial data analysis 

(ESDA), confirmatory spatial data analysis (CSDA), and prescriptive spatial data analysis 

(PSDA) (Unwin 1996:510).  Tasks of SDA may include, according to Fischer 

(1999:284): (i) detection of patterns in spatial data; (ii) exploration and modeling of 

relationships between such patterns; (iii) enhanced understanding of the processes that 

might be responsible for the observed patterns; and (iv) improved ability to predict and 

control events arising in geographical space.  It seems that (i) and a half of (ii) pertain to 

ESDA, the other half of (ii) and (iii) to CSDA, and (iv) to PSDA.  The distinction 

between ESDA and CSDA has been based on a dichotomy between data-driven and 

model-driven (Anselin 1990; Openshaw 1990; Anselin and Getis 1992), and sometimes 

based on one between inductive and deductive (Openshaw 1990).  According to Haining 

(Hainging 1990; Haining et al. 1998; 2000a; 2000b), ESDA is the extension of 

exploratory data analysis (EDA), and its aims are descriptive, seeking to detect patterns 
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in spatial data, to formulate hypotheses, and to assess statistical models for spatial data.  

In contrast, CSDA is the extension of confirmatory data analysis (CDA), and its aims 

include testing hypotheses and fitting models that are explicitly spatial in the sense that 

spatial dependence is incorporated in the model specification.  It should be noted, 

however, that the distinction between ESDA and CSDA is often blurred (Anselin & Getis 

1992; Bailey 1994).  Especially, it would be more so if a distinction between pre-

confirmatory ESDA (before hypothesis formulation) and post-confirmatory ESDA (after 

hypothesis formulation) is introduced (Fotheringham and Charlton 1994).  Further, 

hypothesis testing on LISA, as an important source for ESDA, has always been an issue 

(Anselin 1995; Ord and Getis 1995; Bao and Henry 1996).   

I suggest, nevertheless, that the distinction is still of value, and ESDA is more 

needed for SDA than CSDA is.  There are two reasons.  First, ESDA is more congruent 

with the nature of spatial data, i.e., spatial dependence, spatial heterogeneity, and spatial 

outliers.  These spatial effects are simply implicated in CSDA.  Some CSDA techniques 

such as spatial autoregressive models (Anselin 1988) and spatial ANOVA (Griffith 1978; 

1992) may alleviate the effects in model specifications, but do not provide a way of 

revealing and exploring them for further insights.  Second, ESDA is more congruent with 

current research platform, i.e. GIS.  Since one of the major aims of ESDA is to detect 

spatial patterns by using visualization techniques, ESDA can take more advantage of 

GIS’s capabilities in visualization and spatial data mining (Fotheringham and Charlton 

1994).   
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According to Bailey (1994:21), the value of GIS to SDA is: (i) flexible ability to 

geographically visualize both raw and derived data; (ii) provision of flexible spatial 

functions for editing, transforming, aggregating and selecting both raw and derived data; 

and (iii) easy access to spatial relationships between entities in the study area.  All these 

benefits from an integration between GIS and SDA more pertain to ESDA.  In a practical 

sense, the only CSDA needs from GIS is the spatial weights matrix.  Here, discussions on 

which SDA functions are more relevant to GIS environments may provide a good 

foundation.  10 GISable SDA techniques proposed by Openshaw (1990) and advocated 

(Fischer and Nijkamp 1992; Bailey 1994; Openshaw and Clarke 1996; Unwin 1996) are 

more related to ESDA, rather than CSDA.  Openshaw and Clarke (1996:32) contend that 

“future GISable spatial analysis methods will be essentially descriptive, exploratory, and 

probably not inferential in a traditional spatial hypothesis testing sense.”  Further, it is 

also noteworthy that “it is not necessary to use a GIS to perform spatial analysis and that 

integrating the two will not necessarily lead to any greater insights into geographical 

theory.”  However, “under certain circumstances, the integration of GIS and spatial 

analysis will have a reasonable high probability of producing insights that would 

otherwise be missed” (Fotheringham 1992:1675-6; Fotheringham and Charlton 

1994:316).  I suggest that the circumstances are more likely to happen to ESDA than to 

CSDA. 

ESDA inherits many properties from EDA which can be defined as “detective 

work” (Tukey 1977:1) and “an intermediate or soft statistics between descriptive and 

inferential or hard statistics” (Good 1983:291), and a bundle of statistical and graphical 
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techniques that enhance a researcher’s intuition into data by utilizing a variety of visual 

representations.  EDA techniques require relatively few, and weaker, assumptions and are 

resistant to outliers or atypical observations (Tukey 1977; Good 1983; Hamilton 1992).  

Some major concepts of EDA, such as brushing, conditioning, and spinning have been 

translated into the context of spatial data.  For example, brushing techniques are to make 

connections among graphs and data tables such that one selection of point(s) in a window 

should simultaneously induce a selection for the corresponding data point(s) in other 

windows (McDonald 1982; Becker and Cleveland 1987).  This technique is translated 

into ‘geographical brushing’ (Monmonier 1989) or ‘spatial windowing’ (Fotheringham 

and Charlton 1994) where a map window is connected to graph and data windows such 

that any selection in the map window makes subsequent selections in other windows, and 

vice versa.  This technique has played a central role in conceptualizing and implementing 

ESDA (Haslett et al. 1990; 1991; MacDougall 1992; Symanzik et al. 1994; 1996; Majure 

et al. 1996; Cook et al. 1996; 1997; Dykes 1997; Symanzik et al. 1998).  The use of other 

graphical techniques, such as box plot, qq plot, trellis graph, Chernoff faces plot, Tukey’s 

star diagram, scatterplot matrix, and biplot, has been advised for spatial data.  As 

mentioned before, I more focus on ESDA techniques based on spatial data analysis or 

spatial statistics, because ESDA techniques are basically aspatial, and their translations to 

spatial data are far from a true ‘spatial’ EDA (Anselin and Getis 1992:25)  

I define ESDA, following Anselin (1994; 1998), as “a collection of techniques to 

describe and visualize spatial distributions, identify atypical locations or spatial outliers, 

discover patterns of spatial association, clusters or hot spots, and suggest spatial regimes 
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or other forms of spatial heterogeneity”.  Several ESDA frameworks for a GIS 

environment have been proposed (Openshaw 1990; Goodchild et al. 1992; Fotheringham 

and Charlton 1994; Openshaw and Clarke 1996; Anselin 1998; Wise et al. 1999).  

Among them, I choose Anselin’s framework (Anselin 1998:81 Table 5.1).  He divides 

tasks for ESDA into four categories (visualizing spatial distribution, visualizing spatial 

association, local spatial association, and multivariate spatial association) and allocates 

relevant ESDA techniques to each.  These ESDA techniques include some geostatistical 

techniques such as variogram (Cressie 1993), variogram cloud (Cressie 1993; Majre et al. 

1996; Majure and Cressie 1997), pocket plots (Cressie 1993), variogram boxplot (Majure 

and Cressie 1997; Kaluzny et al. 1998), spatial lag scatterplot (Cressie 1993; Majre & 

Cressie 1997), and some lattice techniques such as spatial lag scatterplot (Fotheringham 

and Charlton 1994), spatial lag pie/bar charts (Anselin et al. 1993; Anselin 1994; Anselin 

and Bao 1997), Moran scatterplot and scatterplot map (Anselin 1994; 1995; Anselin and 

Bao 1997), local Moran boxplot (Anselin 1995), LISA local Moran map and Moran 

significance map (Anselin 1995; 2000).  This study largely follows this Anselin’s 

framework with more focusing on ESDA techniques based on local SAMs. 

  

2.3.2 Global and local spatial association measures 

 The importance of local statistics is straightforwardly derived from limitations of 

global measures, or parameters.  Global spatial measures, from spatial autocorrelation 

coefficients to regression parameters, are based on an assumption of spatial stationarity 

(Anselin 1996; Unwin 1996; Anselin and Bao 1997; Fotheringham 1997).  According to 
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Fotheringham (2000:71), “the raison d’etre for the development of local statistics is the 

low probability in many situations that the ‘average’ results obtained form the analysis of 

a spatial data set drawn from a broad region apply equally to all parts of that region, the 

assumption of traditional global statistics.”  It is ironic that, albeit a strong tradition of 

areal differentiation, quantitative geography has focused on spatial similarities rather than 

spatial differences, global generalities rather than local exceptions, and ‘whole-map’ 

values rather than mappable statistics (Fotheringham 2000).  In conjunction with ESDA, 

major objectives of local statistics include: (i) identifying atypical locations (spatial 

clusters); (ii) discovering significant local spatial association (spatial clusters or hot 

spots); (iii) detecting local pockets of non-stationarity (spatial regimes) (Anselin 1995; 

1999; Getis and Ord 1996).  These are correspondent to what Fischer (1999:285) refers to 

as ‘spatial dependence and heterogeneity descriptors’.   In addition, the integration of GIS 

and ESDA obviously favors local statistics rather than global ones (Openshaw 1990; 

Openshaw & Clarke 1996; Anselin 1996).  Anselin (1996:113) points out that “the focus 

of ESDA techniques used in conjunction with a GIS should be on measuring and 

displaying local patterns of spatial association, on indicating local non-stationarity, on 

discovering islands of spatial heterogeneity and so on.” 

 As mentioned before, three univariate local spatial association measures have 

been proposed, Getis-Ord Gi and Gi* (Getis and Ord 1992; Ord and Getis 1995), and 

local Moran’s Ii, and Geary’s ci (Anselin 1995), and collectively construct a class of 

LISA (Local Indicators of Spatial Association) (Anselin 1995; Getis and Ord 1996).  

Anselin (1996) subsequently developed Moran scatterplot and related mapping 
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techniques for local Moran’s Ii  (Anselin 1996).  Some issues on distributional properties 

and hypothesis testing for local Moran’s Ii  have been extensively discussed (Anselin 

1995; Bao and Henry 1996; Tiefelsdorf and Boots 1997; Sokal et al. 1998; Haining 

2000a; Tiefelsdorf 2000).  Those issues will be addressed later on.  The LISA has been 

applied to a variety of research topics (Table 2.2).   

 Obviously, local statistics for ESDA is not confined to univariate SAMs.  A 

global bivariate spatial association measure which can be decomposed was proposed 

(Wartenberg 1985) and advocated (Griffith 1993; 1995).  Geographically weighted 

regression scheme as a multivariate local spatial measure was also proposed and 

elaborated (Brunsdon et al. 1996; 1998a; 1998b; 1999; Fotheringham et al. 1997a; 1997b; 

1998).  Despite the presence of other local statistics such as local point pattern analysis, 

spatial expansion method, and adaptive filtering, this dissertation exclusively focuses on 

local SAMs for areal data.  

 In order to devise local spatial measures, one may need to set up several criteria.  

Any kind of measure should have one or two or all the three properties below: 

 (i) it is a statistically processed or derived values(s) from raw data; 

 (ii) it is derived in a disaggregated fashion; thus, it is another variable 

 (iii) it contains information on topological relationships among observations 

From these criteria, some aspatial and global measures such as mean, Pearson’s 

correlation coefficient, and regression coefficient satisfy only (i).  (i) and (ii) collectively 

confine aspatial and local measures such as z-score vector, local Pearson’s correlation 

coefficient vector, and regression residual or factor score vector.  A combination of (i)  
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Subjects Examples 
Economic analysis Bao et al 1995; Barkely et al 1995; O’Loughlin 

1996; Bernat 1996; Hung & Weber 1999; Lopez-
Bazo et al 1999; Rey and Montouri 1999; Ying 
2000; Matisziw and Hipple 2001 

Criminology Cohen and Tita 1999; Mencken & Barnett 1999; 
Messner et al. 1999; Ratcliffe and McCullagh 1999; 
Chakravorty & Pelfrey 2000; Kamber et al 2000 

Natural hazard analysis Pereira et al. 1998 
Spatial interaction Berglund and Karlstrom 1999 
Social and political studies O’Loughlin et al 1994; Talen 1997; Talen and 

Anselin 1998; Gleditsch & Kristian 2000 
Modifiable areal unit problem Amrhein and Reynolds 1996; 1997 
Spatial epidemiology Ord and Getis 1995; Tiefelsdorf 1998; 2000 
Image data processing Getis 1994; Wulder 1999 
Real estate Can 1998; Paez, et al. 2001 
Urban population Wang and Meng 1999 
 

 

Table 2.2: Studies utilizing univariate local spatial association measures 
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and (ii) characterizes spatial and global measures such as Moran’s I and bivariate 

Moran’s I (Wartenberg 1985) or cross-Moran (Griffith 1993; 1995), and parameters of 

spatial autoregressive models.  Only spatial and local measures meet all three criteria, 

e.g. local SAMs. 

 

2.3.3 A SAM-based ESDA-GIS framework 

An ESDA-GIS framework is defined as a GIS-based research platform equipped 

with ESDA techniques.  Developments of the ESDA-GIS framework are strongly 

connected to emergence of GIS as a general purpose platform for SDA (Haining et al. 

2000a), where geographically referenced data are stored, retrieved, managed, analyzed, 

and visualized in a truly spatial way.  An ESDA-GIS framework based on SAMs is 

largely characterized by a continuous interaction between GIS and ESDA techniques 

(Figure 2.1).  First, GIS provides information on topological relationships among 

observations.  Second, the information is processed to construct a spatial weights matrix.  

Third, ESDA computes SAMs, generates graphical illustrations, and export them to GIS.  

Fourth, GIS visualizes the imported local SAMs with mapping techniques. 

 In this sense, recent efforts to integrate univariate SMAs with GIS platforms can 

be seen as good examples of an ESDA-GIS framework.  How to integrate GIS and ESDA 

has been an issue.  The first way is to make a module for local SAMs in aspatial 

statistical package using script languages packages provide.  For example, Bivand and 

Gebhardt (2000) developed a module for spatial statistics, including local statistics in R 

language.  Some approaches, although they do not include functions for local statistics,  
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fall into this category (e.g., SPLANCS for S language (Rowlingson and Diggle 1993); 

spatial autoregressive library for MATLAB (LeSage 1999); special scripts of spatial 

autocorrelation for MINITAB and SAS (Griffith 1988), for SAS (Griffith 1993), for 

SPSS (Tiefelsdorf and Boots 1995), and SAS and SPSS (Griffith and Layne 1999)).   

The second way is to use stand-alone ESDA or SDA programs.  For example, 

stand-alone programs implement local SAMs (Data Desk (Wilhelm and Steck 1998), 

REGARD (Unwin 1996), CrimeStat (Levine 1999), and Tcl/Tk/cdv (Dykes 1998)).   

The third way is to customize GIS programs by developing script codes for local 

statistics, without connection to statistical programs or languages.  For example, Zhang 

and Griffith (1997) and Hansen (1997) develop Avenue scripts for local statistics.  

Similarly, Ding and Fotheringham (1992) and Bao et al. (1995) implemented some of 

local statistics in ARC/INFO by way of AML.   

The fourth way is to construct an ESDA-GIS platform which connects GIS and 

some other programs, usually statistical, by means of RPC (Remote Procedure Calls for 

UNIX), DDE (Dynamic Data Exchange for Window), or ActiveX for Microsoft 

Windows environment.  In the context of local SAMs, at least 6 programs have been 

developed.  These include SpaceStat-ArcView (Anselin and Bao 1996; 1997; Anselin 

1998; 2000), R-GRASS (Bivand 2000), SAGE-ARC/INFO (Haining et al, 1996; 1998; 

2000a; 2000b), SPLUS-ArcView (Kaluzny et al. 1998; Bao et al. 2000), 

AWK/GMT/GRASS (Bivand 1997), and ACESS-MapObjects (Zhang and Griffith 2000).   

One crucial implementation issue is raised in the context of this study.  In 

situations where a researcher develops a set of statistical and graphical techniques and 
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wants to connect with a GIS program for visualizing and exploring the mappable results, 

which way could be most viable?  This is extremely important, because “ESDA ought to 

concern itself with the implementation of algorithms, not just their elaboration and the 

purchase of products claiming to include them” (Bivand 1998:500).  It seems necessary 

to regard GIS as a general purpose platform (Haining et al. 2000a) and connect ESDA 

with it in order to take advantage of its full functionality (Anselin 1999).  It seems 

untenable to completely depend on a GIS so that new algorithms are made available 

within it by way of a script language the GIS provides, mainly because the GIS script 

language is not effective for intensive computations and quality-graphics.  It also seems 

cumbersome to build a completely new platform for the ESDA-GIS integration, not only 

because it is not a technically easy task, but because it may prevent researchers from 

continuously updating functions and from taking advantage of other integrations which 

already contain a number of functions.  It is also recognized that languages for 

developing statistical algorithms are interpreted such as Java, S, and R, rather than 

complied, such as C and Fortran, because the former more allows researchers to interact 

with data and prototype new algorithms (Bivand 1996; 1997; 1998; Dykes 1998; 

MathSoft 1999). 

 The ESDA-GIS platform for this study is composed of (i) a preexisting excellent 

ESDA-GIS integration, SPLUS-ArcView; (ii) a bundle of S-scripts that generate various 

types of spatial weights matrices, calculate SAMs, and draw statistical graphs.  A similar 

approach can be found in CFGIS-NEA by Pierce et al. (2001) where SPLUS-ArcView 

plays a central role with being assisted by Avenue scripts for additional analytical tools 
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and MS Access for an efficient database management.  Another benefit of using S 

language is that it is excellently performing not only for statistical procedures but for 

scientific visualization.  Quality of graphics in most of GIS programs has been 

questioned.   
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CHAPTER 3 

 

 

3A UNIVARIATE SPATIAL ASSOCIATION MEASURE: S AND Si 

 

 

3.1 Rationales for univariate spatial association measures 

 

 The need for univariate SAMs, often known as spatial autocorrelation indices, has 

long been recognized.  A numeric vector with n observations with different values can 

generate n! different permutations or arrangements, each of which has a distinct order of 

data points.  When referenced by spatial locations, different orders of a numeric vector 

result in different spatial patterns with different degrees of the univariate spatial 

dependence or spatial clustering.  To illustrate, I generate three different spatial patterns 

from a numeric vector on a hypothetical space consisting of 37 hexagons (Figure 3.1).  

The numeric vector has a mean of 1.838 and a variance of 0.514.  Since the spatial 

patterns are three out of all possible 37!/(7!17!13!) geographical variables, they share the 

same numerical properties.  Differences in the univariate spatial dependence among the 

three patterns can only be computed by global univariate SAMs. 
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Figure 3.1:  Three spatial realizations of a hypothetical numeric vector 
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In the context of local SAMs, each locale consisting of a reference area and its 

neighbors has different degree of a local univariate spatial dependence.  In other words, 

each locale tends to be unique in terms of the degree to which the spatial dependence in 

the particular location conforms to the overall global spatial dependence that is captured 

by the corresponding global SAM.  Further, some locales show a higher level of internal 

homogeneity (internal homogeneity).  Some locales can be characterized by a higher 

level of deviation from the overall mean (spatial clustering): either clusters of above-

average values (hot spots) or clusters of below-average values (cold spots).  In contrast, 

reference areas in some locales may be extremely dissimilar to its neighbors (spatial 

outliers).  Note that spatial outliers are only defined by relationships between a reference 

area and its neighbors, not by overall heterogeneity within a locale.  All theses different 

kinds of variability among locales in terms of the spatial dependence can be 

conceptualized as the univariate spatial heterogeneity. 

 Two global univariate SAMs have long been devised: Moran’s I (Moran 1948) 

and Geary’s c (Geary 1954), and earlier works on SAMs have focused only on these two 

measures (Cliff and Ord 1981; Goodchild 1986; Griffith 1987; Odland 1988).  Their 

corresponding local SAMs (Anselin 1995) and newly developed local measures, G  and 

 (Getis and Ord 1992; Ord and Getis 1995), collectively constitute a general class of 

local indicators of spatial association (LISA).  Table 3.1 summarizes the equations of 

these measures except for Getis-Ord statistics because they do not have corresponding 

global SAMs.  The relationships between global SAMs and local SAMs satisfy a more 

restrictive additivity requirement that an average value of local SAMs equal to a  

i

*
iG
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Table 3.1: Univariate spatial association measures 
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corresponding global SAM.  Note that the equation for local Geary’s ci is modified from 

Anselin’s original specification (1995) in order to meet the requirement.   

 The two measures gauge the univariate spatial dependence differently.   A higher 

local Moran’s Ii results more from how a reference area is deviated from the mean than 

from how similar a reference area is to its neighbors.  This means that, even though a 

locale is characterized by a high level of local homogeneity, a lower local Moran’s Ii 

would be yielded if values in the local are close to the overall mean.  In contrast, local 

Geary’s ci exclusively tackles the local homogeneity in a locale by calculating an 

averaged difference between a reference area and its neighbors.  Thus, Moran’s I is more 

suitable to identify spatial clusters and spatial outliers, whereas Geary’s c is more 

effective in measuring the local homogeneity within a locale.  This brings a fundamental 

conceptual issue:  by what should the univariate spatial dependence be defined, local 

homogeneity or spatial clustering.  Another problem can be seen from Table 3.1.  Both 

measures are heavily dependent upon a reference area.  Even though a local SAM is 

assigned to a reference area, the value should assess an overall locale in terms of the local 

spatial dependence, which will be tackled later.  All theses issues constitute rationales for 

a new univariate SAM, global and local. 

 

3.2 Global univariate spatial association measure, S 
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Lee (2001) formulates a concept of a spatial smoothing scalar in relation to 

Moran’s I and suggests that it can be used as a univariate spatial association measure.  

Now, a spatial smoothing scalar denoted by S is given: 
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where v  is an entry in a general spatial weights matrix V.  When a row-standardized 

spatial weights matrix W is applied, equation (3.1) is simplified t0: 
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where  denotes a spatially smoothed value at ith location that can be calculated by 

 (see Lee 2001).  Conceptually, it corresponds what has been termed as a spatial 

lag (SL) or spatial moving average (SMA) that computes a localized mean value.  

ix~

jx∑ j ijw

  As Lee (2001) shows, equation (3.2) is approximately equivalent to: 
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where x~  is a mean value of a SL or SMA vector that is denoted by .  Thus, (3.3) is 

defined as a ratio of variance of a SL or SMA vector to variance of the original variable 

X.   

X~

  Further, a decomposition of Moran’s I shows (Lee 2001): 
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From (3.4), Moran’s I is seen as a Pearson’s r between a variable and its SL or SMA 

scaled by the square root of the ratio of the SL’s or SMA’s variance to the original 

variable’s variance (or the ratio of SL’s or SMA’s standard deviation to the original 

variable’s standard deviation).  The derivation corresponds to a well-known finding that 

Moran’s I is a regression coefficient when a variable’s SL is regressed on the original 

variable (Anselin 1995; Griffith and Amrhein 1997).  By utilizing the general relationship 

between a regression coefficient in a bivariate regression and Pearson’s r between two 

variables, (3.4) is easily proved.   

 Equation (3.4) is further decomposed to: 
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Now, Moran’s I is seen as a product of square root of S and Pearson’s r between a 

variable and its SL or SMA.  From (3.5), two things should be noted.   

  First, the S reveals substantive information about the spatial clustering of a 

variable.  If a variable is more spatially clustered, its S is larger, because variance of the 

original vector is less reduced when it is transformed to its SL or SMA.  For example, Ss 

for three spatial patterns are respectively 0.649, 0.418, and 0.175 (Figure 3.2).  The value 

of 0.649 for pattern A indicates that the variance of A’s SL is approximately 64.5% of 

that of the original A.   

 Second, S is a crucial element in the Moran’s I equation.  The other element, 

Pearson’s r between a variable and its SL, remains a measure of point-to-point 

association in the sense that very different associations between an area and its neighbors 

could result in very similar or even identical contributions.  For example, if two 

observations have the same value and their neighbors’ means are the same, their spatial 

lag elements will be identical; thus their contributions to Pearson’s r between the variable 

and its SL are identical.  However, a neighbors’ mean does not take variance among 

neighbors into account: one observation could be surrounded by homogeneous neighbors; 

the other could be connected to neighbors which are very different from one another.   
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Figure 3.2:  The relationship between S and Moran’s I 
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In summary, a spatial smoothing scalar S is a direction-free univariate spatial 

association measure.  If a spatial pattern is more spatially clustered, it is given a higher 

value of S.   

 

3.3 Local univariate spatial association measure, Si  

 

A local spatial smoothing scalar (Si) is given: 
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when a row-standardized spatial weights matrix W is applied, equation (3.6) is simplified 

to: 
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Equation (3.7) can be rewritten as: 
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Now, a local Si is seen as a spatially smoothed z-score (SSZ).  Thus, a vector of local Si is 

a vector of the square of a normalized form of  (subtracted by the mean and divided by 

the standard deviation of the original variable X, which can be written as: 

X~

 

          (3.9) ( )2~XZSX =

 

Equation (3.9) indicates that a higher Si results when not only a high z-score in an area 

itself but a high average of z-scores in its neighbors are present.  This suggests that an 

area’s value itself should be included in calculation.   

  Behaviors of Si can become more evident when it is compared to local Moran’s Ii 

that is given: 

 

           (3.10) XXX ~ZZI ⋅=

 

It is certain that a local Moran’s Ii is largely determined by a reference area.  A negative 

value is assigned to a local setting where a z-score in a reference location and a spatially 

smoothed z-score of its neighbors have different signs.  It may be problematic in some 

cases: for example, when a reference area has a value of slightly smaller than average and 

its neighbors have values of highly larger than average, the over locale should be detected 

as a spatial clustering of high values.  In this case, a local Moran’s Ii in the reference area 

will be negative, whereas a local Si will be high.   
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 Figure 3.3 addresses this issue.  All the three locales should be recognized as a spatial 

clustering of high values, even though the degree decreases from pattern A to pattern C.  

When values in hexagons are assumed to be z-scores, a product of a value in the center 

and an average of satellite hexagons (column b) yields a local Moran’s Ii (column d) 

whereas the square of an average of all the values (column c) is a local Si (column f).   

Local Geary’s ci is also heavily influenced by a reference area.   Obviously, pattern C is 

detected as a spatial heterogeneity by the measure, even though the overall pattern is 

largely homogeneous.  It thus can be said that, while a local Moran’s Ii and Geary’s ci are 

measures of comparing a reference area with its neighbors, a local Si is a measure of 

characterizing an overall locale.  In other words, local Moran’s Ii and local Geary’s ci are 

more adequate in detecting spatial outliers that are defined as areas that are significantly 

different from their neighbors, whereas local Si is more adequate in gauging an overall 

level of spatial clustering at a given locale.  Table 3.2 summarizes this issue. 
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SL b SMA c 
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Moran’s Ii
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A 11
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1
11  

1 1 1 1 0 1 

B 01
1 1

1
11  

0 1 0.86 0 1 0.74 

C -11
1 1

1
11  

-1 1 0.71 -1 4 0.50 

a: z-score of the reference area 
b: spatial lag operation: average of z-scores in the neighbors 
c: spatial moving average operation: average of z-scores in the reference area and its 
neighbors 
d: a·b 
e: ( ) 62∑ −

j ji zz  

f: c2 

 
 
 
 

Figure 3.3: A comparison of local univariate spatial association measures 
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 Moran’s Ii Geary’s ci Lee’s Si 

Local homogeneity Not effective Effective Neutral 

Spatial clusters (hot and cold spots) Effective Not effective Effective 

Spatial outliers Effective Not effective Not effective 

Dependency on reference area Strong Strong Not strong 
 

 

Table 3.2: Characteristics of local univariate spatial association measures 
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CHAPTER 4 

 

 

4A BIVARIATE SPATIAL ASSOCIATION MEASURE, L AND LI 

 

 

4.1 Parameterization of the bivariate spatial dependence 

 

 The concept of spatial dependence points to the propensity for nearby locations to 

influence each other and to possess similar attributes (Anselin 1988; Anselin and Griffith 

1988; Anselin and Getis 1992).  At the heart of problems that spatial dependence may 

cause lies the loss of information that each observation carries.  When spatial dependence 

is present, the information from observations is less than would have been obtained from 

independent observations, because a certain amount of the information carried by each 

observation is duplicated by other observations in the cluster (Haining 1990, p. 40-41; 

Anselin 1990).  This loss of information invalidates most statistical tests, because it 

lowers the effective number of degrees of freedom (Goodchild 1996:244).  For example, 

in the context of the OLS regression, the presence of spatial autocorrelation causes 

misleading significance tests and measures of fit (Anselin and Griffith 1988:16; 

Fotheringham and Rogerson 1993:11).  In the same vein, the significance testing for 
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Pearson’s correlation coefficient may be flawed when similar associations are spatially 

clustered since the degree of freedom cannot be calibrated by  (Bivand 1980; 

Richardson and Hémon 1981; Clifford and Richardson 1985; Clifford et al. 1989; 

Haining 1991; Dutilleul 1993). 

2−n

In the bivariate context, n! different pairs can be drawn from two numeric vectors, 

when elements in each variable are all different (note that the corresponding data points 

are bound in a permutation process).  The n! different pairs are identical to one another in 

terms of the point-to-point association, e.g. Pearson’s r.  Since data points are spatially 

indexed, however, different pairs are characterized by different degrees of the bivariate 

spatial dependence, thus different levels of spatial co-patterning are revealed.  To 

illustrate, three patterns in Figure 4.1 are now seen as different variables, and the three 

pairs, A-B, B-C, and C-A, show identical relationships in terms of Pearson’s r (0.422).  

The association of A-B, however, shows a higher level of bivariate spatial dependence or 

spatial co-patterning than those of B-C and C-A: the association of A and B displays the 

highest level of spatial clustering of hexagons sharing the same values between the two 

maps. 

Having realized that a pair of variables under investigation represents only a 

particular case of all possible bivariate spatial associations, one may wish to devise a 

measure that effectively differentiates the associations by integrating the two concepts of 

‘association’.  The importance of a conceptual disintegration and computational 

reintegration of ‘point-to-point association’ and ‘spatial association’ can be clarified by 

two conceptual illustrations.  In the first example, a bivariate spatial association is seen as  
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Figure 4.1:  Three bivariate spatial associations among three spatial patterns 



a Pearson’s r between two sets of local Moran’s Iis.  This illustrates that locations with an 

identical value might be differently recognized in measuring a bivariate association if 

their relations with neighboring locations are different.   

The second conceptual illustration is provided by the global Moran’s I of what 

can be termed local Pearson’s ri.  A local Pearson’s ri captures the degree of numerical 

correspondence between two values at a location, and is simply calculated by multiplying 

two z-scores of the values, each of which is standardized by the mean and standard 

deviation of each variable.  The mean value of local Pearson’s ris is nothing but a global 

Pearson’s r.  When local Pearson’s ris are mapped, a global Moran’s I captures the degree 

of spatial dependence of point-to-point associations across locations.  This provides a 

conceptual foundation for a bivariate spatial association measure and suggests that an 

integration of Moran’s I as a univariate spatial association measure and Pearson’s r as an 

aspatial bivariate association measure may lead to a feasible measure.  As can be seen 

from Figure 4.1, the level of bivariate spatial dependence is determined by the level of 

univariate spatial dependence of variables involved when the point-to-point association is 

held constant.  This further suggests that a bivariate spatial association measure should be 

a composite of three elements: univariate spatial associations of two variables and their 

point-to-point association in a certain form.  Figure 4.2 illustrates all these conceptual 

considerations. 

Although the need for a bivariate spatial association measure has long been 

recognized, the only comprehensive attempt to devise a parametric bivariate spatial 

association measure is Wartenberg’s work (1985), which proposed a matrix algebraic  
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B i v a r i a t e   S p a t i a l   A s s o c i a t i o n 

                                  

 
 

Figure 4.2: Conceptualization of the bivariate spatial association 
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form for the bivariate Moran’s I intended to provide an alternative correlation matrix for 

a spatial principal components analysis.  His measure has drawbacks, however, which 

will be discussed subsequently. 

 

4.2 A global bivariate spatial association measure, L  

 

4.2.1 Criteria for a bivariate spatial association measure and critiques on 

Wartenberg’s formulation 

By reference to findings in the previous section, two criteria can be suggested for 

developing a bivariate spatial association measure.  First, the measure should conform to 

Pearson’s r between two variables in terms of direction and magnitude to a certain extent.  

Although the measure has an exclusive interest in the spatial association among 

observations, it should retain the direction and magnitude of a point-to-point association 

between two variables, which requires the inclusion of a certain form of Pearson’s 

correlation between two variables.  Second, a bivariate spatial association measure should 

reflect the degrees of spatial autocorrelation for both variables under investigation.  In 

other words, it should respond to the collective effect of Ss of the variables.   

The most comprehensive attempt to develop a bivariate spatial association 

measure by extending Moran’s I is Wartenberg’s work (1985).  He developed a bivariate 

Moran’s I following Mantel’s formulations. 

 

C11
CZZI T

T

=          (4.1) 
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where I is a variable-by-variable Moran correlation matrix, Z is a case-by-variable matrix 

whose elements are z-scored, C is a case-by-case binary connectivity matrix, and  1 is a 

case-by-1 column matrix with all elements being 1s. The diagonal values of I are 

Moran’s I coefficients for the variables, with each off-diagonal element being a bivariate 

Moran’s I (Griffith (1993; 1995) terms it Cross-MC (Moran Coefficient)), which is 

similar to the cross-correlation approach in geostatistics (Isaaks and Srivastava 1989).   

By decomposing the matrix and applying a row-standardized spatial weights 

matrix, one can write an equation for an off-diagonal element in the matrix I between two 

variables, X and Y: 
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A comparison of (4.2) and (3.5) reveals that Wartenberg’s bivariate spatial association 

measure, or bivariate Moran’s I, captures a bivariate association between X and the SL of 

Y, and the association is scaled by square root of S for Y. 

Using Wartenberg’s formula as a bivariate spatial association measure has two 

obvious disadvantages that violates the two criteria established before.  First, it is 

conceptually untenable to allow a bivariate spatial association measure to be primarily 

calibrated by the relationship between a variable and the other variable’s SL.  Moreover, 

a bivariate spatial association measure should incorporate both Ss of two variables in the 
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equation, not just the S of a variable.  Equation (4.2) also implies that  and  may 

be different when a row-standardized spatial weights matrix is involved, which nullifies 

much of Wartenberg’s attempt to formulate a spatial principal component analysis using 

an I matrix in (4.1). 

YXI , XYI ,

Second, Wartenberg’s equation is vulnerable to a reverse of the direction of 

association.  For example, when an area i with a higher-than-average value for both X and 

Y are surrounded by lower-than-average values, the numerator value in (4.2) could be 

given a negative value, because the SL of Y for the area is negative (the right part of the 

numerator), with the left part being necessarily positive.  A simulation observed that most 

of the associations with negatively autocorrelated Y vectors were assigned negative 

bivariate association indices.  In conclusion, Cross-MC should not be used as a bivariate 

spatial association measure. 

 

4.2.2 A global bivariate spatial association measure, L   

 A bivariate spatial association measure (L) is defined as: 
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and, when a row-standardized spatial weights matrix (W) is applied, (4.3) is simplified 

to: 
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Further, when the SL operation is introduced, (4.4) is transformed to: 
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Note that  and  are elements for a location i in X’s and Y’s SL vectors (  and Y ).  

To decompose (4.5) as undertaken for the Moran’s I equation, it is compared to an 

equation for Pearson’s r between SLs, which is given as: 

ix~ iy~ X~ ~
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Note that x~ and y~  are mean values of the SL vectors.  By utilizing (4.6), (4.5) can be 

rewritten as: 
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The element of A is approximately 1, and the element of B will be zero when either 

variable’s mean is identical to one of its SL, which is very likely.  Then L is redefined as:  

 

 YXYXYX rSSL ~,~, ⋅⋅≡        (4.8) 

 

Now, L between two variables is calculated by multiplying Pearson’s correlation 

coefficient between their SL vectors by the square root of the product of their Ss.  

Further, a matrix algebraic form for L is provided, when variables are z-transformed: 

 

 ( )
( )1VV1

ZVVZL
 
 

TT

TT

=         (4.9) 

 

where L is a variable-by-variable bivariate spatial association matrix, Z is an area-by-

variable (z-scored) data matrix, and V is an area-by-area general spatial weight matrix.  

Note that, when W is applied, the denominator is reduced to n.  A spatial correlation 
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matrix driven by (4.9) can be furthered to calibrate a spatial principal components 

analysis as seen from Wartenberg’s attempt (1985). 

In addition, it should be noted that the diagonal elements in matrix L have a 

particular meaning.  From equation (14), a diagonal element can be written as: 
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        (4.10) 

 

where  is simply the S of X defined in Chapter 3.  Equation (4.10) allows a 

transformation of (4.8): 

XXL ,

 

 YXYYXXYX rLLL ~,~,,,   ⋅⋅≡         (4.11) 

 

A higher value in the diagonal of the matrix L implies a higher Moran’s I for the variable, 

and results in a higher L index between the variable and other variables, all other 

conditions being constant.   

In summary, the L index as a bivariate spatial association measure is largely 

determined by Pearson’s r between two SL vectors, which generates a smoothed version 

of Pearson’s correlation coefficient between the original variables.  Pearson’s r between 

SLs, then, is scaled by a product of univariate Ss of the variables, which suggests that L 
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captures not only the bivariate ‘point-to-point association’ between two variables, but 

also the univariate spatial autocorrelation. 

 

4.2.3 An illustration with a hypothetical data set 

For the purpose of illustration, the three different spatial patterns, A, B, and C in 

Figure 4.1 are utilized (Figure 4.3).  A', B', and C' are spatially rotated versions of those 

patterns, such that the univariate spatial dependence of the original patterns remain 

unchanged in terms of S and Moran’s I.  From Table 1, four things should be 

acknowledged. 

First, the sign in Pearson’s r between two variables remains unchanged in L as 

long as the sign of Pearson’s r between their SLs is given accordingly.  The only 

exception is found in the association of A-C', where Pearson’s r between the two patterns 

is positive (0.107), but one between their SLs is negative (-0.240).  One way of dealing 

with this problem may be to apply the spatial moving average operation where the 

weighted mean of neighbors for an area is computed with the area itself being included.  

This means that the spatial weights matrix W as a row-standardized version of C is 

replaced by a matrix of a row-standardized version of a modified C, where c . 1=ii

Second, as seen in equation (19), L between two identical patterns does not yield a 

value of 1, and the value changes between pairs of variables (compare A-A, B-B, and C-

C in Figure 4.2).  This provides a crucial insight into the comparison between two spatial 

patterns.  That is, the bivariate spatial dependence between identical patterns is 

completely determined by the univariate spatial dependence of the pattern. 
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Pattern SSS Correlation 

Association 
X Y Xa Yb 

YXr ~,~ c 
YXr ,

d YXL ,
e 

A-A 

  

0.649 0.649 1.000 1.000 0.649 

B-B 

  

0.418 0.418 1.000 1.000 0.418 

C-C 

  

0.175 0.175 1.000 1.000 0.175 

A-B 

  

0.649 0.418 0.628 0.422 0.327 

B-C 

  
0.418 0.175 0.577 0.422 0.154 

C-A 

  
0.175 0.649 0.634 0.422 0.214 

A-A' 

  

0.649 0.649 -0.800 -0.472 -0.512 

B-B' 

  

0.418 0.418 -0.388 -0.051 -0.162 

C-C' 

  

0.175 0.175 -0.185 -0.051 -0.024 

A-C' 

  

0.649 0.175 -0.240 0.107 -0.074 

 
    cba ⋅⋅≅e . 
 
 
 
 
 

Figure 4.3: L with different bivariate spatial associations 
 

 66 



Third, L differentiates different spatial associations with an identical Pearson 

correlation coefficient.  A-B, B-C, and C-A are identical in terms of Pearson’s r (0.422); 

however, they have Ls respectively of 0.327, 0.154, and 0.214 (Figure 4.2).  This implies 

that L is largely determined by the SSSs of the two variables involved when Pearson’s r 

is identical.  Since a negative L indicates a spatial discrepancy, a poorer spatial co-

patterning should be given a negative value with a larger amount.  This is well illustrated 

by a comparison between B-B' and C-C': Pearson’s correlation coefficients are identical 

(-0.051), but the spatial discrepancy is much more obvious in B-B', which is reflected in 

L values (-0.162 and –0.024). 

Fourth, L differentiates different spatial associations with identical Ss but different 

Pearson’s r, which can easily be acknowledged by comparing A-A and A-A', B-B and B-

B', and C-C and C-C' in Figure 4.2.   

Comparing L values among different spatial patterns, one may recognize that the 

L effectively measures similarity/dissimilarity among variables in terms of bivariate 

associations and their spatial clustering.  In computation, the numerical point-to-point 

association is calibrated largely by Pearson’s r between SL vectors, and the spatial 

association is recognized by the product of Ss.  Thus, the two elements collectively 

capture the spatial co-patterning and parameterize the bivariate spatial dependence.   

 

4.3 A local bivariate spatial association measure, Li  
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Albeit its obvious rationale, the concept of the local bivariate spatial association 

in the context of lattice data has never been extensively tackled, with few exceptions.  A 

concept of a geographically weighted correlation or spatial moving correlation has been 

proposed (Brunsdon et al. 1999, Fotheringham and Brunsdon 1999, Fotheringham 2000: 

75), which is very similar to what has been used to calibrate the level of correspondence 

between two raster or image layers.  As can be seen from the previous section, a local 

Cross-Moran’s Ii can be drawn from the corresponding global measure (Wartenberg 

1985).  However, mainly due to its unreliable behaviours (see Lee 2001, Tiefelsdorf 

2001), it should be ruled out as a local association measure.  Tiefelsdorf (2001) proposes 

a spatial cross-correlation coefficient in the context of the comparison between two sets 

of regression residuals.  A local Li largely corresponds to his specification; practically, a 

spatial cross-correlation coefficient is a local Li without the denominator under a 

restriction that a spatial weights matrix should have a zero-diagonal.   

 

4.3.1 Defining a local bivariate spatial association measure, Li 

By decomposing (4.3), a bivariate local spatial association measure is presented 

as (Lee 2001): 
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When a row-standardized spatial weights matrix ( ) applies, equation (4.12) is 

simplified to: 

W
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where  and  denote spatially smoothed values at ith location that can be calculated 

by ∑  and (see Lee 2001a).  Now, a vector of local L

ix~

j ijw

iy~

jx ∑ j jij yw is is seen as a 

vector resulting from a product of normalized forms of  and Y  (subtracted by means 

and divided by standard deviations of the original vectors), which can be written as: 

X~ ~

 

          (4.14) YX ~~ ZZL ⋅=

 

where L is a column vector of local Lis.   and  can be conceptualized as vectors of 

spatially smoothed z-scores (SSZs).   

X~Z Y~Z

  Similarly, a bivariate local pseudo- or quasi-spatial association measure, local 

Pearson’s ri, can be given by decomposing the Pearson’s correlation coefficient (Lee 

2001): 
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Now, a vector of local ris is seen simply as a vector consisting of products between z-

transformed X and Y, which is given: 

 

          (4.16) YX ZZr ⋅=

 

By using the same notions, vectors of local Moran’s Iis and local Cross-Moran Iis can be 

denoted respectively by  and .  From equation (4.16), one may notice 

that a local r

XX ~ZZ ⋅ YX ~ZZ ⋅

i gauges a local correlation between two values at ith location; in other 

words, the pair’s relative contribution to the corresponding global correlation.   

  However, a local Pearson’s  is not a truly spatial statistic even though it is 

evidently local, because it does not have any information about the topological 

relationships among observations in a data set.  As far as geographically referenced data 

are concerned, local r

ir

i only captures a point-to-point association or numerical co-varying, 

ignoring spatial association or spatial clustering (Hubert et al. 1985, Haining 1990, 

1991, Lee 2001, Tiefelsdorf 2001).  Under the presence of the bivariate spatial 

dependence (Lee 2001), neighboring locations tend to retain similar covariances and thus 

a set of local ris should display a spatial clustering when it is mapped.  In this sense, local 

Lis can be seen as spatially smoothed local correlations.  A value for a location is given 

not only in terms of the value at the location, but in terms of values in neighboring 

locations. 
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4.3.2 Behaviors of Li in different local settings 

  In this section, it will be illustrated how the measure behaves in order to 

parameterize the bivariate spatial dependence under different local spatial configurations 

consisting of a reference location and its neighbors.  This is conducted not only in 

comparison with local Pearson’s ri, but also in terms of the difference between spatial lag 

and spatial moving average operations.  The transformation from (4.12) to (4.13) was 

made possible by defining spatially smoothed vectors, i.e.  and Y .  Those vectors are 

spatial lag vectors when diagonal elements in a spatial weights matrix are zero; but they 

are spatial moving average vectors when one with a non-zero diagonal applies.  In order 

to examine how those different operations impact on the behaviours of local L

X~ ~

i, two 

different spatial weights matrices are utilized:  is a row-standardized version of C  

where a cell is assigned 1 if two areas are directly connected and zero otherwise;  is a 

row-standardized version of , a C matrix with 1s on its diagonal.   

W

*W

*C

  Figure 4.4 shows how Li behaves in different local bivariate associations.  A 

hypothetical local spatial configuration composed of seven hexagons with a central one 

being a reference location is introduced.  Three different z-values, 1, 0, and -1, are 

assigned to reference locations such that we have three different groups of local patterns 

(positively-centred, neutrally-centred, and negatively-centred): e.g. local patterns starting 

with A (A1 to A5) have a z-value of 1 in the reference location.  For each group, five 

different combinations of 1, 0, and -1 constitute sets of neighbors: e.g. local patterns 

ending with 1 (A1, B1, and C1) have the same set of neighbors consisting of six 1s.  By 

cross-tabulating the 15 different local patterns, 6 large cross-sections (A-A, A-B, A-C, B- 

 71 



 

(u
pp

er
 a

nd
 lo

w
er

 v
al

ue
s i

n 
ea

ch
 c

el
l a

re
 re

sp
ec

tiv
el

y 
lo

ca
l L

is 
w

ith
 sp

at
ia

l w
ei

gh
ts

 m
at

ric
es

 W
 a

nd
 W

*)
 

Fi
gu

re
 4

.4
: L

oc
al

 L
is 

in
 d

iff
er

en
t l

oc
al

 se
tti

ng
s 

P
o
si
ti
v
el
y
-C
en
te
re
d

N
eu
tr
al
ly
-C
en
te
re
d

N
eg
at
iv
el
y
-C
en
te
re
d

A
1

A
2

A
3

A
4

A
5

B
1

B
2

B
3

B
4

B
5

C
1

C
2

C
3

C
4

C
5

L
o
ca
l

P
at
te
rn
s

1
1

1
1

1

1
1

1
-1

-1
-1

-1

-1
-1

1
0

1
0

1

0
1

1
-1

1
-1

1

-1
1

1
0

-1
0

-1

0
-1

0
1

1
1

1

1
1

0
-1

-1
-1

-1

-1
-1

0
0

1
0

1

0
1

0
-1

1
-1

1

-1
1

0
0

-1
0

-1

0
-1

-1
1

1
1

1

1
1

-1
-1

-1
-1

-1

-1
-1

-1
0

1
0

1

0
1

-1
-1

1
-1

1

-1
1

-1
0

-1
0

-1

0
-1

1
-1

.5
0

0
-.
5
0

1
-1

.5
0

0
-.
5
0

1
-1

.5
0

0
-.
5
0

A
1

1
1

1
1

1

1
1

1
-.
7
1

.5
7

.1
4

-.
2
9

.8
6

-.
8
6

.4
3

0
-.
4
3

.7
1

-1
.2
9

-.
1
4

-.
5
7

-1
1

-.
5
0

0
.5
0

-1
1

-.
5
0

0
.5
0

-1
1

-.
5
0

0
.5
0

A
2

1
-1

-1
-1

-1

-1
-1

-.
7
1

.5
1

-.
4
1

-.
1
0

.2
0

-.
6
1

.6
1

-.
3
1

0
.3
1

-.
5
1

.7
1

-.
2
0

.1
0

.4
1

.5
0

-.
5
0

.2
5

0
-.
2
5

.5
0

-.
5
0

.2
5

0
-.
2
5

.5
0

-.
5
0

.2
5

0
-.
2
5

A
3

1
0

1
0

1

0
1

.5
7

-.
4
1

.3
3

.0
8

-.
1
6

.4
9

-.
4
9

.2
4

0
-.
2
4

.4
1

-.
5
7

.1
6

-.
0
8

-.
3
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
A
4

1
-1

1
-1

1

-1
1

.1
4

-.
1
0

.0
8

.0
2

-.
0
4

.1
2

-.
1
2

.0
6

0
-.
0
6

.1
0

-.
1
4

.0
4

-.
0
2

-.
0
8

-.
5
0

.5
0

-.
2
5

0
.2
5

-.
5
0

.5
0

-.
2
5

0
.2
5

-.
5
0

.5
0

-.
2
5

0
.2
5

A
5

1
0

-1
0

-1

0
-1

-.
2
9

.2
0

-.
1
6

-.
0
4

.0
8

-.
2
4

.2
4

-.
1
2

0
.1
2

-.
2
0

.2
9

-.
0
8

.0
4

.1
6

1
-1

.5
0

0
-.
5
0

1
-1

.5
0

0
-.
5
0

1
-1

.5
0

0
-.
5
0

B
1

0
1

1
1

1

1
1

.8
6

-.
6
1

.4
9

.1
2

-.
2
4

.7
3

-.
7
3

.3
7

0
-.
3
7

.6
1

-.
8
6

.2
4

-.
1
2

-.
4
9

-1
1

-.
5
0

0
.5
0

-1
1

-.
5
0

0
.5
0

-1
1

-.
5
0

0
.5
0

B
2

0
-1

-1
-1

-1

-1
-1

-.
8
6

.6
1

-.
4
9

-.
1
2

.2
4

-.
7
3

.7
3

-.
3
7

0
.3
7

-.
6
1

.8
6

-.
2
4

.1
2

.4
9

.5
0

-.
5
0

.2
5

0
-.
2
5

.5
0

-.
5
0

.2
5

0
-.
2
5

.5
0

-.
5
0

.2
5

0
-.
2
5

B
3

0
0

1
0

1

0
1

.4
3

-.
3
1

.2
4

.0
6

-.
1
2

.3
7

-.
3
7

.1
8

0
-.
1
8

.3
1

-.
4
3

.1
2

-.
0
6

-.
2
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
B
4

0
-1

1
-1

1

-1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

-.
5
0

.5
0

-.
2
5

0
.2
5

-.
5
0

.5
0

-.
2
5

0
.2
5

-.
5
0

.5
0

-.
2
5

0
.2
5

B
5

0
0

-1
0

-1

0
-1

-.
4
3

.3
1

-.
2
4

-.
0
6

.1
2

-.
3
7

.3
7

-.
1
8

0
.1
8

-.
3
1

.4
3

-.
1
2

.0
6

.2
4

1
-1

.5
0

0
-.
5
0

1
-1

.5
0

0
-.
5
0

1
-1

.5
0

0
-.
5
0

C
1

-1
1

1
1

1

1
1

.7
1

-.
5
1

.4
1

.1
0

-.
2
0

.6
1

-.
6
1

.3
1

0
-.
3
1

.5
1

-.
7
1

.2
0

-.
1
0

-.
4
1

-1
1

-.
5
0

0
.5
0

-1
1

-.
5
0

0
.5
0

-1
1

-.
5
0

0
.5
0

C
2

-1
-1

-1
-1

-1

-1
-1

-1
.7
1

-.
5
7

-.
1
4

.2
9

-.
8
6

.8
6

-.
4
3

0
.4
3

-.
7
1

1
-.
2
9

.1
4

.5
7

.5
0

-.
5
0

.2
5

0
-.
2
5

.5
0

-.
5
0

.2
5

0
-.
2
5

.5
0

-.
5
0

.2
5

0
-.
2
5

C
3

-1
0

1
0

1

0
1

-.
1
4

-.
2
0

.1
6

.0
4

-.
0
8

.2
4

-.
2
4

.1
2

0
-.
1
2

.2
0

-.
2
9

.0
8

-.
0
4

-.
1
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
C
4

-1
-1

1
-1

1

-1
1

-.
1
4

.1
0

-.
0
8

-.
0
2

.0
4

-.
1
2

.1
2

-.
0
6

0
.0
6

-.
1
0

.1
4

-.
0
4

-.
0
2

.0
8

-.
5
0

.5
0

-.
2
5

0
.2
5

-.
5
0

.5
0

-.
2
5

0
.2
5

-.
5
0

.5
0

-.
2
5

0
.2
5

C
5

-1
0

-1
0

-1

0
-1

-.
5
7

.4
1

-.
3
3

-.
0
8

.1
6

-.
4
9

.4
9

-.
2
4

0
.2
4

-.
4
1

.5
7

-.
1
6

.0
8

.3
3

 

 72 



B, B-C, and C-C), each of which is composed of 25 cells, are generated (note that figure 

1 is symmetric).  Since 3 diagonal sections are internally symmetric, 120 different local 

bivariate spatial associations are yielded.  The figure is doubled because each cell has two 

entries respectively based on two spatial weights matrices (  and ).  Since values 

assigned to hexagons are assumed to be z-scores, a product of two spatially smoothed z-

scores yield a local L

W *W

i for the reference location. 

  From Figure 4.4, several observations are made.   

  First, each cross-section is represented by a single local Pearson’s ri.  Since a 

local Pearson’s ri is computed by two z-scores at a reference location, it is indifferent to 

neighbor settings.  Thus, the sections of A-A, A-B, A-C, B-B, B-C, and C-C are given 

respectively 1, 0, -1, 0, 0, and 1.   

  Second, unlike local Pearson’s ri, local Lee’s Li takes account of neighboring 

values so that it has a negative value in a section where a positive local Pearson’s ri is 

expected.  For example, the association of A1-A5 has a pair of negative Lis in its cell with 

a local Pearson’s ri of 1.   

  Third, there are some variations in diagonal cells that are denoted by associations 

of identical patterns.  As Lee (2001) point out, the measure differentiates among pairs of 

identical patterns in terms of variances among neighbors such that only two identical 

associations (A1-A1 and C2-C2) yield a maximum local Li (1 in our case) with both 

spatial weights matrices.   

  Fourth, W  yield a more reasonable set of local measures than .  Since  

does not take into account a reference location, upper values computed with W in figure 

* W W
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1 are identical among all the cross-sections.  For example, A1-A1, A1-A2, and A1-A3 are 

all given a Local Li of 1 when  is applied, even though the degrees of spatial co-

patterning are obviously different: highest in A1-A1 and lowest in A1-C1.  In this sense, 

the measure behaves more reasonably with : it effectively differentiates those 

associations, assigning different values, 1, 0.86, and 0.71.  In conclusion, unlike for 

univariate spatial association measures, a spatial weights matrix with a non-zero diagonal 

should be utilized for bivariate spatial association measures. 

W

*W
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CHAPTER 5 

 

 

A GENERALIZED SIGNIFICANCE TESTING METHOD I: 

A NORMALITY ASSUMPTION 

 

 

It has been well acknowledged that the use of Moran’s I as a global spatial 

association measure to parameterize the spatial clustering in a geographical pattern is a 

special case of its more general use for assessing spatial autocorrelation among regression 

residuals with an assumption that unobservable disturbances are independent identically 

normal distributed (Cliff and Ord 1981; Upton and Fingleton 1985; Anselin 1988; 

Tiefelsdorf and Boots 1995).  Distributional properties of the measure including higher 

moments under the assumption of spatial independence have been examined (Henshaw 

1966; 1968; Hepple 1998; Tiefelsdorf 2000).  Further, an exact distribution approach has 

demonstrated its superiority over the approximation approach (Tiefelsdorf and Boots 

1995; Hepple 1998) and its ability to embrace the conditional moments (Tiefelsdorf 

1998; 2000).   

This chapter is concerned with formulating a general procedure to generate first 

four moments of spatial association measure.  This is based on a rationale that the 
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moment extraction procedure developed for Moran’s I can be extended not only to other 

univariate spatial association measures as suggested for Geary’s c (Cliff and Ord 1981; 

Hepple 1998), but also to local measures as applied to local Moran’s Ii (Boots and 

Tiefelsdorf 2000), as far as a measure can be defined as scale invariant ratio of quadratic 

forms of residuals (Tiefelsdorf 2000).  Since spatial association measures are seen as ratio 

of quadratic forms of deviants from an overall mean, resulting distributional moments 

correspond to those extracted under the normality assumption (Cliff and Ord 1981:21). 

Subsequently, I first provide a generalized procedure to generate first four moments 

of spatial association measures.  Second, I apply the generalized procedure to six 

different univariate spatial association measures such as global Moran’s I, local Moran’s 

Ii, global Geary’s c, local Geary’s ci, global Lee’s S and local Lee’s Si.  It will be 

demonstrated that all the measures are expressed as ratio of quadratic forms of deviants 

from an overall mean, and that only difference occurs in defining spatial proximity 

matrices.   

 

5.1 A generalized procedure for univariate spatial association measures 

 

A global spatial association measure should be defined as ratio of quadratic forms: 

 

δδ
δTδ

⋅
⋅⋅

=Γ T

T

          (5.1) 
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where δ  is a vector of deviants of a variable denoted by a vector of y, i.e., each value 

subtracted by mean, and T is a global spatial proximity matrix, a normalized form of a 

spatial weights matrix V.     

  Equation (5.1) can be rewritten by utilizing a particular projection matrix that is 

defined as: 

 

  



























−−−

−−−

−−−

=⋅⋅−=

nnn

nnn

nnn

T

n

111

111

111

)1(

1

1

1

1

L

OM

L

11IM     (5.2) 

 

This is a particular form of the projection matrix that projects a dependent variable and 

disturbances into a residual space that is orthogonal to a design matrix X consisting of 

independent variables (Tiefelsdorf 2000:16).  That is, 

 

  M        (5.3) ( ) TT XXXXI 1−
−=

 

Since we focus on spatial association measures as pattern describers, the design matrix is 

solely composed of a vector of 1s resulting in (5.2).  By utilizing (5.2), equation (5.1) is 

transformed to: 
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  ( ) ( )

( ) yMy
yMTMy

⋅⋅
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=

1

11
T

T

Γ        (5.4) 

 

where δ  and )  is an idempotent, symmetric matrix so that 

.    

( ) yM ⋅= 1

( ) ( )11 MM ⋅

(1M

( )1M =

  Previous studies (Durbin and Watson 1950; 1951; 1971; Henshaw 1966; 1968) 

show that the distributional properties of a spatial association measure defined as in (5.4) 

are given by a matrix trace operation of  under an assumption of 

independence among observations.  Since a trace operation of matrix products is 

indifferent to the order of the product, computationally  is reduced to 

.  When  is denoted by K, first four central moments are given (Henshaw 

1966; 1968; Hepple 1998; Tiefelsdorf 2000): 

( ) ( )11 MTM ⋅⋅

( ) ( )11 MTM ⋅⋅

( ) TM ⋅1 ( ) TM ⋅1
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  (5.5d) 

 

In order to use equations above, T matrix (thus V matrix) should be symmetric.  

Skewness and kurtosis from the moments are given respectively by (Tiefelsdorf 

2000:102): 

 

  
( )2

3

2

3
1

µ

µ
β =          (5.6a) 

  
( )2

2

4
2

µ
µ

β =          (5.6b) 

 

  This procedure also holds for local spatial association measures as long as they 

are defined a scale invariant ratio of quadratic forms as demonstrated for local Moran’s Ii 

(Tiefelsdorf 1998; Boots and Tiefelsdorf 2000). 

 

( )
( )

( )

( ) yMy
yMTMy

⋅⋅

⋅⋅⋅⋅
=Γ

1

11
T

iT

i        (5.7) 

 

( )iT  is a particular form of a local spatial proximity matrix derived from a global 

proximity matrix.  Again, the matrix should be symmetric.  As will be seen in the next 
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section, spatial association measures are differentiated solely by the spatial proximity 

matrix. 

 

5.2 Distributional moments of global univariate spatial association measures 

 

Table 5.1 summarizes the definition of a global spatial proximity matrix T for three 

global univariate spatial association measures, Moran’s I, Geary’s c, and Lee’s S.  

Practically, a matrix of T is defined as a standardized form of a spatial weights matrix V.  

For example, when a row-standardized spatial weights matrix W is applied, T for 

Moran’s I becomes identical to V.  Since T (thus V) should be symmetric in order to use 

equations (5-1)-(5-4), it may be necessary for some non-symmetric spatial weights 

matrices such as W to be transformed according to an equation: 

 

 ( )TVV +⋅2
1          (5.8) 

The  matrix for Geary’s c should be further elaborated.  According to Cliff and Ord 

(1981:167), it is defined: 

Ω

 

 ( )∑ +⋅=
j

jiij vv2
1Ω         (5.9) 

 

Simply the matrix is a diagonal matrix with row-sums when a spatial weight matrix is 

transformed symmetric.   
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Γ  Equations T  
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VV
 TT

T
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Table 5.1: Definitions of global spatial proximity matrix T for global univariate spatial 
association measures 
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5.3 Distributional properties of local univariate spatial association measures 

 

Table 5.2 summarizes the definition of a local spatial proximity matrix  for 

three local univariate spatial association measures.  A local spatial weights matrix  is 

defined as a global spatial weights matrix whose elements are set to zeroes except for 

entries in ith row: 

( )iT

iV

 

        (5.10) 



























=

0

0

V iniiii vvv LL1

 

Even though V  does not have to be symmetric in calculating a local measure, it should 

be transformed symmetric in order to calculate distributional moments.  When M  

is denoted by K, the equations (5.6a)-(5.6d) compute first four moments at each location.   

i

( )
( )iT⋅1

  The local spatial weights matrix for local Geary’s ci should be elaborated, because 

a local spatial proximity matrix cannot be directly derived from a global spatial proximity 

matrix Ω .  Ω  is a matrix of zeroes except for ω  that is inherited from Ω ,  is 

defined according to equation (5.10), and diag() operation transforms a vector to a 

diagonal matrix.  Thus, a local spatial weights matrix for Geary’s c

V− i ii iV

i is given: 
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Table 5.2: Definitions of local spatial proximity matrix T  for local univariate spatial 
association measures 
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CHAPTER 6 

 

 

A GENERALIZED SIGNIFICANCE TESTING METHOD II: 

A RANDOMIZATION ASSUMPTION 

 

 

 This chapter formulates two generalized randomization methods for significance 

testing, the Extended Mantel Test and a generalized vector randomization test, and then 

demonstrate how they are unitized to compute first two moments of SAMs. 

 

6.1 Two sets of randomization tests 

 

6.1.1 The Extended Mantel Test 

It has been recognized that both Moran’s I and Geary’s c are special cases of 

Mantel (1967)’s generalized cross-product association measure (Glick 1979; Hubert 

1978; Sokal 1979; Cliff and Ord 1981; Hubert et al. 1981), and that the associated 

significance testing method can be used for deriving distributional properties of spatial 

autocorrelation indices (Cliff and Ord 1981; Upton and Fingleton 1985).  Particularly, 

Hubert et al. (1981) strongly appreciate the benefits of generality that Mantel’s 
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generalized measure and the randomization inference associated with it may provide for 

the spatial association.  Practically, when two matrices in Mantel’s equation being 

properly defined for Moran’s I and Geary’s c, equations for the expected value and 

variance of Mantel’s statistic (Mantel 1967; Cliff and Ord 1981:23, Eq. 1.44 ~ 1.46) 

bring exactly the same set of values as one computed from usually used equations for 

both measures based on the randomization assumption (see Cliff and Ord 1981:21, Eq. 

1.37, 1.39, and 1.42).  This opens a possibility that the Mantel’s notion of matrix 

comparison can be extended to bivariate situations, and their distributional properties can 

be derived accordingly as attempted (Hubert and Golledge 1982; Hubert et al. 1985). 

It should be recognized, however, that the link between the Mantel Test and 

spatial association measures is ensured by an arbitrary restriction on defining a spatial 

weights matrix; the diagonal elements are set to zeroes.    This restriction is often 

infeasible.  On the one hand, there is no definite reason that prevents diagonal elements 

from being non-zeroes; the expected value for Moran’s I cannot be given by the famous 

equation any longer, ( )11 −− n .  On the other hand, it would be inevitable for a certain 

spatial association measure to have non-zero diagonal elements; Lee’s L cannot be 

defined with a zero-diagonal spatial weights matrix to be a derivative of the Mantel 

statistic.  Further, if diagonal elements in a spatial weights matrix are different from one 

another, resulting in a certain level of variance, the equation for the variance in any 

spatial association measure should be modified to include the variance among diagonal 

elements and their covariance with off-diagonal elements.   
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With respect to this, Heo and Gabriel (1998) succeed in extending the Mantel Test 

by devising a way of dealing with non-zero diagonal elements in any of two matrices 

involved.  Thus, the main purpose of the present paper is to apply their formulations to 

spatial association measures to obtain an adequate set of distributional properties.  

Subsequently, I present the Extended Mantel Test based on Heo and Gabriel (1998) by 

utilizing a set of matrix quantities for the first two moments.   

Mantel’s generalized cross-product association measure (Z) is originally proposed 

to explore spatio-temporal dependence among events, and is given by (Mantel 1967): 

 

(∑∑∑
≠≠

==
ijii ij

ijij yxZ
,

YX o )

)

)

       (6.1) 

 

where  is an element in the spatial (dis)similarity matrix X, and  is an element in the 

temporal (dis)similarity matrix Y, and  denotes a pairwise dot product between two 

matrices.  By calculating the sum of pairwise dot products between two matrices, the 

measure evaluates whether there is a certain relationship between the spatial distance and 

temporal distance between the members of all possible n  pairs (Mantel 1967).  

Based on the randomization assumption, expected value and variance can be presented as 

(for definitions for all the quantities in (6.2) and (6.3), see Cliff and Ord 1981:23): 
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Note that a restriction of i  is required for all the elements in (6.2) and (6.3).  In other 

words, the diagonal elements in at least one of two matrices should be set to zeroes.   

j≠

 By eliminating the restriction, a generalized spatial association measure  is 

defined as: 

( )Γ

 

 ( ) ( ) ( )TT

i jij
ijij qp PQQPQP trtr

,
====Γ ∑ ∑∑ o     (6.4) 

 

where P is a matrix of spatial proximity of locations, and Q is a matrix of numeric 

proximity of values on locations (Haining 1990:230).  The measure is obtained by 

summing up all the pairwise dot products or all the diagonal elements of inner or outer 

product of P and Q.  The overall expected value should be decomposed into two 

elements, one for off-diagonal elements and the other for on-diagonal elements: 

 

 ( ) ( ) ( )onoff EEE Γ+Γ=Γ        (6.5) 
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Now, the overall expected value is defined by a sum of expected values for off-diagonal 

elements and on-diagonal elements.  Accordingly, the variance is decomposed into three 

elements (Heo and Gabriel 1998:847): 



 

 ( ) ( ) ( ) ( )onoffonoff  ,Cov2VarVarVar ΓΓ⋅+Γ+Γ=Γ     (6.6) 

 

The equations that will be presented for all the elements in (6.5) and (6.6) are based on 

what Mantel calls a “finite population approach” (Mantel 1967:213).  This is basically 

identical to what has been called the randomization approach.  The rows and columns of 

the Q matrix are permuted while the P matrix arbitrarily being kept.  He makes a 

requirement in the permutation process that “if any 2 rows are permuted, the 

corresponding 2 columns are also permuted so that, for each i, the ith row and ith column 

will correspond to the same case.” (Mantel 1967:215) 

 In order to define the original equations ((6.2) and (6.3)), only six quantities are 

needed (Mantel and Valand 1970).  However, since those quantities are relevant only to 

off-diagonal elements, some additional quantities should be defined, making at least 12 

being necessary (Table 6.1).  One restriction is that both matrices should be symmetric to 

compute those quantities.  An asymmetric matrix (e.g. row-standardized spatial weights 

matrices) can be rendered symmetric by an equation, ( )TPP +2
1 .  

 From (6.5) and (6.6), one may notice that five elements should be obtained in 

order to compute mean and variance; two for mean ( ( )offE Γ  and ( )onE Γ ) and three for 

variance ( ( )offVar Γ , ( )onVar Γ , and ( )onoff  ,ΓΓCov ).  Table 6.2 presents equations for the 

five elements with quantities defined in Table 6.1.  By combining the first two rows in 

Table 6.1, we have an equation for the overall expected value: 
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Table 6.1: Quantities necessary for computing the first two moments of spatial 
association measures 
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If diagonal elements in any of P and Q are zeroes, then the overall expected value 

reduces to one for off-diagonal elements, because ( )onE Γ  will be equal to zero.  If sums 

of all the elements in P and Q are defined as constant values, ( )offE Γ  will be further 

simplified.   

 For variance, it should be noted that ( )offVar Γ  and (6.3) are identical, when the 

quantities are defined in accordance to Cliff and Ord (1981).  It also should be recognized 

that ( )onΓVar  reduces to zero with a binary connectivity matrix (C) or its row-

standardized version (W), because all the quantities in the element are zeroes.   Even with 

a spatial weights matrix with non-zero diagonal elements, the variance will remain zero if 

they have a constant value, which can be easily verified from the notation for ( )onVar Γ  in 

Table 6.2. 

 For covariance ( ( )onoff  ,Cov ΓΓ ), one can notice that, if there is no variance among 

diagonal elements in any of P and Q due to either zero-diagonal or constant diagonal, 

then the overall variance reduces to the variance only for off-diagonal elements, because 

the covariance will be zero. 

 

6.1.2 A generalized vector randomization test 
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A generalized vector randomization test is a very simple way of deriving 

distributional moments especially for local SAMs that will be seen later on.  A general 

statistic conforming to the test is given: 

 

 ( ) ( ) ( ) ( )( )∑+⋅=Γ
i

iii
i

i
ii qp QP o       (6.8) 

 

where  and  are ith entries in  and )  that are respectively a local spatial 

proximity vector and a local numeric vector, and  and Q  are (n-1)-by-1 vectors 

derived from  and )  by eliminating the ith elements.  In this specification, the 

sampling distribution of local measures is determined by a permutation between two 

vectors,  and Q .  Hubert (1984:453; 1987:28) provides equations for the expected 

value and variance of a measure that is defined as a sum of pairwise products of two 

vectors with n observations.  By slightly modifying the equations, the expected value and 

variance for local measures are given respectively by: 
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where  and )  are entries in  and Q , and ( )i
ip − ( i

iq − ( )i−P ( )i− ( )ip −  and ( iq − )  are mean values 

of those vectors.  I would call a procedure from (6.8) to (6.9) a generalized vector 

randomization test.  

 

6.2 Application of randomization tests to spatial association measures 

 

 Here I deal with ten SAMs, five global ones (Moran’s I, Geary’s c, Lee’s S, 

Cross-Moran, and Lee’s L and their local versions.  Table 6.3 summarizes which 

randomization testing methods can be applied to what SAMs.  The Extended Mantel Test 

can be used for all the global SAMs and local SAMs when a total randomization is 

assumed.  It is also applied to local Si and local Li when a conditional randomization 

assumption.  The generalized vector randomization test is utilized for all the local SAMs 

under the conditional randomization except for local Si and Li.  Subsequently, I 

demonstrate how the general procedures presented in the previous section are applied to 

particular SAMs. 

 

6.3 Significance testing for global spatial association measures 

 Table 6.4 lists the five global SAMs in a matrix notation.  Without loss of 

generality for the spatial weights matrix, V allows for any way of defining topological 

relationships among observations.  The matrix notation column is presented by utilizing 

the z-transformation of variable(s).  The matrix notation for Geary’s c should be 

elaborated.   Cliff and Ord (1981:167) demonstrate that Geary’s c can be presented in a  
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SAMs Total 
Randomization 

Conditional 
Randomization 

Univariate Moran’s I Global M n/a 
  Local M V 
 Geary’s c Global M n/a 
  Local M V 
 Lee’s S Global M n/a 
  Local M M 

Bivariate Cross-Moran Global M n/a 
  Local M V 
 Lee’s L Global M n/a 
  Local M M 

         (M: The Extended Mantel Test; V: A Generalized Vector Randomization Test;  
          n/a: Not Applicable) 
 
 
 
 
Table 6.3: Significance testing methods for spatial association measures under the 
randomization assumption 
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Dimensions Measures Matrix Notation 
Univariate Moran’s I ( )

1V1
zVz

 
 

T
X

T
X

XI =  

 Geary’s c ( ) ( )
1V1

zVΩz
 

 1
T

X
T

X
X n

nc −
⋅

−
=  

 Lee’s S ( ) ( )
( )1VV1

zVVz
 
 

TT
X

TT
X

XS =  

Bivariate Cross-Moran ( )
1V1
zVz

 
 

, T
Y

T
X

YXI =  

 Lee’s L ( ) ( )
( )1VV1

zVVz
 
 

, TT
Y

TT
X

YXL =  

 
 
 
 
 

Table 6.4:  Global spatial association measures in a matrix notation 
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quadratic form like Moran’s I.  The matrix of  is defined as a diagonal matrix with 

nonzero elements, each of which is defined as: 

Ω

 

 ( )∑ +=
j

jiijii vv2
1ω   (    (6.11) ) symmetric, is when ∑=

j
ijii vωV

 

Note that the diagonal of  becomes identical to a vector of row-sums of V, when V is 

symmetric.   

Ω

 By using the equations in the matrix notation, one can define the matrices of P 

and Q for each spatial association measure in order to conform to the general form in 

(6.4) (Table 6.5).  For all the measures, the matrix of P is defined as a standardized form 

of the spatial weights matrix.  P matrix for Geary’s c should be further elaborated.  From 

(6.11) for a symmetric V, the matrix of is presented as: VΩ −

 

      (6.12) 
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Since the sum of each row is equal to zero, the sum of all the elements in the matrix is 

also equal to zero.  The sum of diagonal elements is given: 
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        (6.13) 
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Thus, the sum of diagonal elements in P is given as seen in Table 6.5: 
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 The matrix of Q is identical between Moran’s I, Geary’s c, and Lee’s S and 

between Cross-Moran and Lee’s L.  The outer product of z-transformed variable X is 

presented: 
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The sum of ith row without its diagonal element is given by: 
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Therefore, the sum of all the off-diagonal elements in Q can be computed by summing up 

all the row-sums: 
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The sum of on-diagonal elements is given by: 
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Thus, the sum of all the elements in Q ( ) is zero (see Table 6.5). 11  QT

 The outer product of z-transformed variables X and Y defines the matrix of Q for 

Cross-Moran and Lee’s L, and is given: 
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The sum of ith row without its diagonal element is given by: 
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Therefore, the sum of all the row-sums in Q is given by: 
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The sum of diagonal elements is given by: 
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From (6.21) and (6.22), it is acknowledged that the sum of off-diagonal elements is 

identical to Pearson’s correlation coefficient between two variables, multiplied by –n, and 

that the sum of on-diagonal elements is the same as Pearson’s correlation coefficient, 

multiplied by n.  In addition, the sum of all the elements in Q is equal to zero, as in Q for 

univariate SAMs (see Table 6.5) 

 When all these definitions are applied to (6.7), one can formulate an equation for 

the expected value specific to each spatial association measure as seen in the last column 

in Table 6.5.   With a binary connectivity matrix (C) or its row-standardized version (W), 

the equation reduces to the well-known equation, ( )11 −− n  for Moran’s I and 1 for 

Geary’s c, since  is equal to zero.  Those familiar expected values, however, do not 

hold for a spatial weights matrix with non-zero diagonal elements.  The equations 

suggested here provide for proper expected values with all kinds of spatial weights 

matrices, which will be illustrated subsequently.   

( )Vtr

 The expected value for Cross-Moran is approximated by ( )1, −− nr YX

VVT

 with C or 

W, which proves Griffith’s findings (Griffith, 1993, page 111; Griffith and Amrhein, 

1997, page 48).  As Tiefelsdorf (2001) and Lee (2001) point out, however, Cross-Moran 

should not be used as a bivariate spatial association measure.  The expected values for 

Lee’s S and Lee’s L hardly reduces to a simpler equation, because  always has non-
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zero diagonal elements regardless of V.  When a row-standardized matrix W* is applied, 

the equations are simplified respectively to: 

 

 ( )
1

1tr
−

−
n

T WW          (6.23) 

 

 ( )
YX

T

r
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1tr
⋅
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−WW         (6.24) 

 

6.4 Significance testing for local spatial association measures 

 

6.4.1 Defining a general form of local spatial association measures and different 

types of randomization 

A general form of global spatial association measures has been defined as 

(Anselin 1995; Lee 2001): 

 

 ( ) ( ) ( )TT

jii j
ijij qp PQQPQP trtr

,
====Γ ∑∑∑ o     (6.25) 

 

where  and  are elements respectively in a spatial proximity matrix P and a numeric 

proximity matrix Q.  Accordingly, Anselin (1995:98) formulates a general form of local 

spatial association measures as: 

ijp ijq
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          (6.26) ∑=Γ
j

ijiji qp

 

Now, a local spatial association measure at ith location is computed by summing up the 

casewise products of two ith rows in P and Q.   

However, this specification is somewhat misleading.  First, equation (6.26) 

obviously leads to a conclusion that all the local measures sum to their corresponding 

global measure, but this in turn contradicts to his statement on the relationships between a 

global Moran’s I and its local ones: i.e., “the average of the Ii will equal to the global I.” 

(Anselin 1995:100)  Contemplated on the more restrictive additivity requirement, 

equation (6.26) should be replaced by: 

 

         (6.27) ∑ ⋅⋅=Γ
j

ijiji qpn

 

 Second, in the context of the significance testing based on randomization 

assumptions, Anselin’s specification, as Sokal et al. (1998) correctly point out, leads to 

different general forms for the local spatial association.  Equation (6.26) could be restated 

by: 

 

( )( )∑
ji

i

,
QP o , or        (6.28) 

 ( )( )∑ , or         (6.29) 
ji

i

,

QP o
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,
QP o          (6.30)   

  

where  and  are certain forms respectively of a local spatial proximity matrix and 

a local numeric proximity matrix.  These three different definitions of the local spatial 

association yield an identical set of local measures but with different sampling 

distributions.  From this observation, Sokal et al. (1998:335) incorrectly conclude that 

“when we permit only conditional permutations, all three Mantel versions of the LISA 

will give rise to the same (conditional) reference distribution” and “there is not a unique 

total reference distribution for a LISA, hence no unique set of total moments.”  

Conceptually, the three different specifications correspond to three different 

randomization assumptions, and thus it is not unusual to observe that they yield different 

sets of distributional properties. 

( )iP ( )iQ

 First, equation (6.28) corresponds to what I call ‘location-based total 

randomization’ that is identical to what Sokal et al. (1998) calls ‘total randomization’, 

where a local spatial configuration consisting of ith location and its neighbors is fixed 

and different sets of values are permuted over there.  A value being set to ith location, all 

the other values are permuted to define a set of neighbors with resulting in a set of local 

statistics, and then another value is set to the ith location and the same procedure is 

undertaken with resulting in another set of local statistics.  In this randomization, the 

expected value is the average value of all possible local measures that can be given to the 
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ith location.  Subsequently, the term of total randomization will be used for this location-

based total randomization. 

Second, equation (6.29) corresponds to what may be called ‘value-based total 

randomization’, where a numeric vector consisting of n observations are permuted over 

the given spatial configuration with ith value always being positioned at a reference spot.  

An ith value being set to a location, all the other values are permuted to define a set of 

neighbors, and then the ith value moves on to another area and the same procedure is 

undertaken.   In this type of randomization, the expected value is the average value of all 

possible local measures that can be given to the ith value.  Obviously, this randomization 

is not relevant to spatial statistics.  

 Third, in a conceptual sense, equation (6.30) conforms to what has been called the 

‘conditional randomization’ (Anselin 1995; Sokal et al. 1998), where an ith value is set 

on the corresponding ith location and all the other values are permuted to constitute a set 

of its neighbors over the given local spatial configuration.   This more restrictive 

randomization scheme gives rise to another issue.  The local measure does not have to be 

defined by matrices.  Rather, it is better seen as the sum of the casewise products between 

two vectors that are drawn from the corresponding global matrices (Sokal et al. 1998).  In 

other words, a local measure can be given as  rather then  (where  

and  are elements in certain forms of vectors derived from )  and Q ).  This implies 

that the Extended Mantel Test cannot be applied to the conditional randomization.  

Rather, a new set of equations that deals with permutations between two vectors should 

be used to compute a set of distributional moments.  Further, the new set of equations for 

∑i iiqp ∑ ji ijij qp
,

( )i

ip

iq (iP
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the first two moments should embrace the fact that an ith case in both vectors should not 

be involved in a permutation procedure.  This will be discussed in the next section. 

 A bivariate situation requires a further clarification, because two elements in pairs 

between two variables should be specifically defined along with their relationships with 

spatial configurations.  There might be three ways of defining the relationships among the 

three elements (two variables and their spatial settings).  One way is first to assign a 

value in X to a location and permute other values to define its neighbors.  For each local 

setting in X, values in Y are randomly permuted to define a local spatial setting in the 

other side.  As in the univariate situation, then, another value in X is set to the location 

and all the permutation procedure is repeated.  In this case, the link between  and  in 

the original variables does not have to be maintained.  Second, ith values in X and Y are 

bound to each other and are assigned to the ith location in both X and Y.  Their neighbors, 

then, are defined by permuting all the other values on each side.  In this case, elements in 

a pair of neighbors,  and , need not follow the geographical reference in the original 

vectors.  In other words, once pivot values at a location are determined from the original 

order, permutations for neighbors are independently conducted between two variables.  

Third way is to undertake the permutation procedure with all the values in X and Y being 

bound to each other according to the original order.  For example, if  is chosen as ’s 

neighbor in a given location, the corresponding  should be placed on that location as a 

’s neighbor.  Once the permutation is done for the ith pair, another pair of values is 

assigned to that location and all the permutation procedure is repeated for a total 

randomization.   

ix iy

ix

jx jy

jx

jy

iy
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In the context of the randomization approach, only the third way is relevant as can 

be seen from a Monte Carlo simulation conducted for Lee’s L (Lee 2001).  A conditional 

randomization for bivariate situations can be easily conceptualized.  A permutation is 

conducted only on a location, not furthering onto other locations.  That is, ith pair, whose 

elements are bound to each other, is assigned to ith location, and all the other pairs, 

whose elements are also bound to each other, are permuted to define two sets of 

neighbors.   

Table 6.6 lists the five local spatial association measures for which I will attempt 

to derive the first two moments based on a generalized randomization approach.  The 

equation for local Geary’s  is modified from Anselin’s original one in order to make 

the average value of local measures equal to the global measure.  Thus, all the four local 

measures satisfy the more restrictive additivity requirement that can be expressed by: 

ic

 

n
i

i∑Γ
=Γ          (6.30) 

 

The local Cross-Moran measure was derived from Wartenberg (1985)’s global measure, 

and local Lee’s Li follows Lee’s definition (Lee 2001).  Getis-Ord’s G-statistics are not 

examined here mainly because it does not have a corresponding global measure satisfying 

the additivity requirement.  However, the significance testing method presented here will 

easily apply to those measures. 
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Dimensions Measures Matrix Notation 
Univariate Local Moran’s Ii ( )

1V1
zVz

 
 

T
Xi

T
X

i nI ⋅=  

 Local Geary’s ci ( )[ ]( ) ( ){ }
1V1

Vz11z
 

   tr
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2

T

T
i

T
X

T
X

i
nc

⋅−
⋅

−
=  

 Lee’s Si ( ) ( )
( )1VV1

zVVz
 
 

TT
Xi

T
i

T
X

i nS ⋅=  

Bivariate Local  
Cross-Moran 

( )
1V1

zVz
 
 

T
Yi

T
X

i nI ⋅=  

 Lee’s Li ( ) ( )
( )1VV1

zVVz
 

 
TT

Yi
T

i
T

X
i nL ⋅=  

       (The (2) operation for local Geary’s ci denotes the squaring of all the elements in a  
       matrix) 
 
 
 
 
 

Table 6.6:  Local spatial association measures in a matrix notation 
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6.4.2 Defining local matrices and vectors 

It is necessary to define some local matrices and vectors in order subsequently to 

define general forms of spatial association measures based on total and conditional 

randomization assumptions.  Tiefelsdorf (1998) defines a local spatial weights matrix in a 

symmetric star-shaped form.  However, I here define a local spatial weights matrix V  by 

assigning zeros to all the elements except for ones on ith row in a global spatial weights 

matrix . 

i

V

 

        (6.31) 



























=

0

0

V iniiii vvv LL1

 

This non-symmetric form of a local spatial weights matrix is preferred not only 

because the symmetricity required for the exact distribution approach can be preserved by 

a transformation function, ( )T
iii VV += 2

1*

P

V , but because the symmetric form does not 

work for bivariate measures.  As a global spatial proximity matrix P is a normalized form 

of a global spatial weights matrix V, a local spatial proximity matrix )P  is defined as a 

normalized form of V  multiplied by n (Table 6.7).  Thus, )  for the first three local 

statistics is derived from  by replacing all entries with zeros except for ones on ith row 

and multiplying it by n . 

(i

i
(iP
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Table 6.7: Definition of matrices 
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As mentioned before, the number of observations (n) should be multiplied for local 

measures in order to satisfy the more restrictive additivity requirement defined in (6.30).  

However, )  for local Lee’s S(iP i and local Lee’s  is not defined as in (6.32); rather, it 

takes a much more complicated form: 
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Obviously, rows other than the ith one should have non-zero entries, and all entries in the 

ith row and column will be zero if V is a spatial weights matrix with a zero-diagonal.   
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In accordance to , a local numeric proximity matrix Q  for all the four local 

measures is defined as (see Table 6.7):  

( )iP ( )i

  

       (6.35) ( )



























=

0

0

Q iniii
i qqq LL1

  

 and (Q       (6.36) ( ) T
iniii qqq ,,,,1 LL=i )

 

where  is an element on an ith row in a global proximity matrix .  Table 6.7 also 

shows how a column vector of  can be specified for each of the local measures.  For 

example, a vector of  for local Moran’s I

ijq Q

( )iQ

( )iQ i is given by  where  is an ith 

element in a standardized form of variable X (subtracted by a mean and divided by a 

standard deviation). 

XXiz Z⋅ Xiz

 

6.4.3 Total randomization and the Extended Mantel Test 

A general local spatial association measure based on the total randomization assumption 

is given by: 
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( )( ) ( )( ) ( )( TiTi

ji

i
i QPQPQP  trtr

,
===Γ ∑ o )     (6.37) 

where  and  for each local measure are seen in Table 6.7.  Since a general form of 

local spatial association measure here is defined as relationships between two matrices, 

the Extended Mantel Test presented in previous section applies to compute the expected 

value and variance.  The difference between global and local measures in terms of the 

sampling distribution result only from differences between P  and .   

( )iP Q

( )iP

Table 6.8 summarizes necessary quantities and an equation for the expected value 

for each measure.  When necessary quantities are computed, the expected value is 

obtained by as in global measures: 

 

( )
( )( ) ( )( )[ ] ( ) ( )[ ]

( )
( )( ) ( )

nnn

iTiiT

i
QPQQPP trtr

1
tr tr E ⋅

+
−

−⋅−
=Γ

1111   (6.38) 

 

Equation (14) can apply to any spatial weights matrices.  When a row-standardized 

matrix ( ) with a zero diagonal is concerned, the equations are more simplified.  One 

can easily recognize that expected values are reduced to 

W

( )11 −n− , 1, and ( )1, −− nr YX  

respectively for the first three local measures, and that they are identical to those for the 

corresponding global measures, which does not hold for other spatial weights matrices 

with non-zero diagonals.  The expected values for local Lee’s Si and local Lee’s Li are 

also simplified to with W or W* when the number of neighbors of ith observation is 

denoted by n  (note that  is always one-degree larger in Wi in * than in W): 
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6.4.4 Conditional randomization and a generalized vector randomization test 

By following the generalized vector randomization test with necessary quantities, 

expected values for three local measures can be derived (Table 6.9).  If a row-

standardized spatial weights matrix with zeros in its diagonal (W) is concerned, the 

expected value for the measures are computed respectively by ( )12 −− nz Xi , ( ) 212 +Xiz , 

and ( )122 −⋅− nzz YiXi .  Whereas expected values under the total randomization are 

identical for all the locations, ones under the conditional randomization are dependent 

upon values on each location.  They are slightly different from ones based on the total 

randomization in Table 4.  The equations for local Moran’s Ii and Geary’s ci are identical 

to ones proposed by Sokal et al. (1998) (note that local Geary’s ci is differently defined in 

this paper).  Variances are also identical to ones calculated by their equations. 

 An inferential test for local Lee’s Si and local Lee’s Li based on the conditional 

randomization is much more complicated.  The equation for both measures is given by: 

 

 ( ) ( ) ( ) ( )( )∑ −−+⋅=
ji

iii
ii

i
iiii qpLS

,
or  QP o       (6-41) 
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where  and  are entries in )  and Q , and  and )  are -by-  

matrices derived from global matrices  and Q .  P  is obtained by eliminating ith row 

and column from .  Q  for Lee’s S

( )i
iip ( )i

iiq

P

(iP ( )i ( )i−P

( )i−

( i−Q ( 1−n )

)

)

( )1−n

P

( )i−
i is given when a spatial weights matrix with a 

zero-diagonal: 

 

         (6.42) ( ) ( ) ( )( Ti
X

i
X

i −−− ⋅= ZZQ

 

where  is a column vector derived from  by eliminating ith entry, and thus Q  

is a (n-1)-by-(n-1) matrix obtained by eliminating ith row and column form .  When a 

spatial weights matrix with a non-zero diagonal, however, the matrix takes a more 

complex form: 

( )i
X
−Z XZ

( )i−

Q

 

      (6.43) ( ) ( ) ( )( ) ( )( i
XXi

Ti
X

i
X

i z −−−− ⋅⋅+⋅= ZZZ diag2Q

 

This specification is necessary to secure that ith element itself is not involved in a 

permutation process but its associations with other values resulting from non-zero 

diagonal elements in V are maintained in the permutation process. 

  Now local Si is defined by relationships between two matrices, the Extended 

Mantel Test again applies to yields equations for the expected value and variance (not 

that now n should be replaced by (n-1) in the computation of necessary quantities). 
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When a spatial weights matrix with a zero diagonal, the expected value is given: 
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The expected value with a spatial weights matrix with a non-zero diagonal takes a much 

more complicated form: 
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When W is applied, (6.46) is simplified to: 
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When W* is applied, (6.47) is simplified to: 
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 In the same way, Q  for Lee’s L( )i−
i is given when a spatial weights matrix with a 

zero-diagonal: 

 

         (6.50) ( ) ( ) ( )( Ti
Y

i
X

i −−− ⋅= ZZQ )

)

 

where  and  are column vectors derived from  and  by eliminating ith 

entries, and thus Q  is a matrix obtained by eliminating ith row and column from Q .  

When a spatial weights matrix with a non-zero diagonal, however, Q  takes a more 

complex form: 

( )i
X
−Z ( )i

Y
−Z

( i−

XZ YZ
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( )i−

 

    (6.51) ( ) ( ) ( )( ) ( )( ) ( )( i
XYi

i
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Y

i
X

i zz −−−−− ⋅+⋅+⋅= ZZZZ diagdiagQ

 

where the diag  operation transforms a vector to a diagonal matrix.  This specification 

is necessary to insure that the ith elements themselves in X and Y are not involved in a 

permutation process but their associations with other values resulting from non-zero 

diagonal elements in  are maintained in the permutation process. 

( )⋅

V
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Since  is differently defined between a spatial weights matrix with a zero-

diagonal and one with a non-zero diagonal, it is necessary to present two different 

equations for the expected value.  When a spatial weights matrix with a zero diagonal, the 

expected value is given: 

( )i−Q
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The expected value with a spatial weights matrix with a non-zero diagonal takes a much 

more complicated form: 
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When W is applied, (6.52) is simplified to: 
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When  is applied, (6.53) is simplified to: *W
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CHAPTER 7 

 

 

7ESDA TECHNIQUES USING LOCAL SPATIAL ASSOCIATION MEASURES 

 

 

 This chapter proposes some ESDA techniques using SAMs and illustrate them 

with a hypothetical data set.  I design two different spatial patterns have the same mean 

(1.838) and variance (0.514) and their Pearson’s correlation coefficient is 0.422 (Figure 

7.1).  Pattern A is used for univariate SAMs, and the relation between pattern A and B is 

utilized for bivariate SAMs.  A row-standardized version (W) of a binary connectivity 

matrix (C) is used for Moran’s I and Geary’s c, and a row-standardized version (W*) of a 

binary connectivity matrix with 1s on its diagonal (C*) is used for Lee’s S and L.   

 

7.1 Univariate ESDA 

 

7.1.1 ESDA using local Moran’s Ii 

If a research objective is to detect spatial clusters (hot spots or cold spots) and 

spatial outliers, ESDA associated with local Moran’s can provide most effective 

techniques.  A Moran scatterplot map is constructed by placing z-scores of a variable and 
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Figure 7.1:  Hypothetical spatial patterns 
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z-scores of its spatial lag vector (note that elements in the spatial lag vector are 

standardized by mean and standard deviation of the original vector, not by ones of the 

spatial lag vector).  Four quadrants in the Moran scatterplot denote different spatial 

associations: the upper right quadrant for high-high associations; the lower left quadrant 

for low-low associations; the upper left quadrant for low-high associations; and the lower 

right quadrant for high-low association (Figure 7.2-(a)).  This graphical technique is 

useful in exploring outliers or leverage points (Anselin 1996).  Moran scatterplot map is a 

nominal or categorical map correspondent to 4 quadrants in the Moran scatterplot.  The 

map may give some ideas about possible spatial regimes.  The most useful mapping 

technique associated local Moran’s Ii is the local Moran significance map (Anselin 

2000).  It displays observations with significantly high or low Moran’s Iis with classes in 

a Moran scatterplot (Figure 7.2-(b)).  Thus, significant spatial clusters, both high and low, 

are easily detected, and spatial outliers, ones surrounded by dissimilar neighbors, may be 

identified.  It should be noted that the significance testing for local Moran’s Ii is far from 

straightforward.   

Among areas showing up in a local Moran significance map, some can be 

identified as spatial clusters if they belong to the first quadrant (hot spots) or the third 

quadrant (cold spots).  In contrast, areas belonging to the second or fourth quadrants can 

be recognized as spatial outliers. 

 

7.1.2 ESDA using local Geary’s ci and Lee’s Si 

If a research objective is to detect locales with a significant homogeneity, a Geary 

significance map can be used (Figure 7.2-(c)).  A significance testing method selects only  
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Figure 7.2:  Univariate ESDA techniques 
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areas with a significantly higher level of internal homogeneity.  More correctly, areas 

whose differences from its neighbors are significantly small will be detected.  This 

conveys best a concept of spatially varying variances.  It should be noted that it does not 

detect spatial clusters since it is indifferent to a value itself in a reference area.  

Significant areas may include not only spatial clusters (hot spots and cold spots), but also 

clusters of close-to-mean values.  Actually, #8 area showing up significant in Figure 7.2-

(c) is located in a spatial cluster of mean-values. 

 If a research objective is to detect spatial clusters without heavily depending upon 

reference areas such that an relative value from the mean of an overall locale, a local-S 

significance map can be utilized (Figure 7.2-(d)).  Since, as discussed in Chapter 3, a 

local Si is computed by squaring a spatially smoothed z-score at a locale, it can avoid the 

tyranny of a reference area.  Further, it can make a distinction between hot spots and cold 

spots by taking into account a sign of a z-score even though it is finally squared to yield a 

local Si.  Unlike in Moran and Geary significance maps, #30 showed up as a significant 

cold spot in Figure 7.2-(d). 

 

7.2 Bivariate ESDA using local Lee’s Li 

 

7.2.1 Local-L map 

  A local-L map is a simple choropleth map with local Lee’s Lis (Figure 7.2-(b))  

Since the average of all the local Lis equals the corresponding global L, a local Li can be 

interpreted as an area’s relative contribution to the global trend.  A local-r map drawn 

with local Pearson’s ris defined in equations (4.15) and (4.16) in Chapter 4 has the same 
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properties (Figure 7.3-(a)).  By comparing them, rationales of a local spatial correlation 

will be effectively illustrated.   

  From a local-r map and local-L map, one can assess the presence of the bivariate 

spatial dependence that similar bivariate associations are spatially clustered.  In both 

maps, areas with negative values indicate negative correlations when a global correlation 

is positive.  Since a Lee’s Li captures not only the numeric similarity within a pair but 

also its relationships with similarity with each of neighboring pairs, a Local-L map 

appears to be a smoothed version of a Local-r map.  Thus, the variance of a local-L map 

is much less than that of a local-r map.  For exploration purposes, however, a local-L map 

provides a more distinctive spatial pattern.  However, it should be noted that those maps 

do not distinguish either between high-high and low-low correlations or between high-

low and low-high correlations.   

 

7.2.2 Local-L scatterplot and Local-L scatterplot map 

 In the same way as in local Moran’s Ii, a local-r scatterplot is constructed by 

setting  on the x-axis and  on the y-axis, and a local-L scatterplot is obtained by 

utilizing two vectors of spatially smoothed z-scores (SSZs) (  and ) defined in 

equation (4.14) in Chapter 4 (Figure 7.3-(c)).  While the slope line in the Local-r 

scatterplot is equal to the global Pearson’s r as in a Moran scatterplot, the property does 

not hold for the Local-L scatterplot.  As expected, variances in both axes are much 

narrower in a local-L scatterplot than in a local-r scatterplot.   

XZ YZ

X~Z Y~Z

 A more important aspect of those scatterplots is that they categorize local 

bivariate associations into four classes.  On the scatterplots, the lower left and upper right  
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Figure 7.3:  Bivariate ESDA techniques 
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quadrants indicate positive bivariate associations: the former for low-low associations 

and the latter for high-high associations.  In contrast, the upper left and lower right 

quadrants indicate negative associations: the former for low-high associations and the 

latter for high-low associations.  Due to the presence of a highly positive global 

correlation, much more areas are plotted on the upper right and lower left quadrants.  

When areas are referenced by their quadrant locations, categorical maps can be created: 

local-r scatterplot map and local-L scatterplot map.   

 In both scatterplot maps, areas belonging to the second and fourth quadrants 

correspond to the areas with negative values in local-r and local-L maps.  Again, a local-

L scatterplot map can be seen as a spatially smoothed version of a local-r scatterplot map, 

with providing a more distinctive spatial pattern.  Each class in a local-L map suggests a 

possible distinctive spatial regime.     

 

7.2.3 Local-L significance map 

A local-L significance map is created when a local-L scatterplot map is combined 

to a significance testing (Figure 7.3-(d)).  When an overall Pearson’s r is high, most 

significant areas correspond to spatial clusters, either high-high associations or low-low 

associations.  They may be called respectively bivariate hot spots and bivariate cold 

spots.  Significant areas belonging to the second and fourth quadrants could be 

conceptualized as bivariate spatial outliers.  A combination of spatial clusters and spatial 

outliers effectively discover spatial regimes whose presence should be explained by a 

multivariate analysis. 
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7.2.4 A discussion 

There are some issues unsolved about this approach.  First, as Lee (2001c) points 

out, sampling distributions of Lee’s Li reveal significant levels of skewness and kurtosis.  

Thus, a more sophisticated inferential test should be devised by including higher 

moments, even though an intrinsic purpose of the measure is not confirmatory but 

exploratory.  Second, as Tiefelsdorf (2001) points out, the measure should be extended to 

the spatial co-patterning between two sets of regression residuals by embracing a 

projection matrix that projects a dependent variable and disturbances into a residual space 

that is orthogonal to a set of independent variables (Tiefelsdorf 2000, 16).  Thus, the use 

of the measure is currently confined to a pair of random variables.  Third, it is unclear 

how Li responds to different spatial weights matrices.  For example, there is no statistical 

interpretation for unequal weights given to reference areas as seen in  where it is 

hardly expected that reference locations be given an identical weight.  

*W

In spite of those unsolved pitfalls, the approach presented here may be benefited 

from its applicability to a wide range of geographical inquiries.  An instant application 

can be undertaken to compute local spatial segregation indices.  Since residential 

segregation intrinsically involves a certain level of spatial clustering (univariate spatial 

dependence), a comparison between spatial distributions of two different racial/ethnic 

groups should embrace the bivariate spatial dependence.  Although some global spatial 

segregation indices have been proposed in order to amend the aspatial nature of regular 

indices of segregation (among others, Morrill 1991, Wardorf 1993, Wong 1993, 

Chakravorty 1996, Lee and Culhane 1998), researchers have suffered from inability to 

explore local variations in the spatial segregation, with just few exceptions (Morrill 1995, 
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Wong 1996).  While a global Lee’s L can provide a reliable measure for overall spatial 

exclusion between two racial/ethnic groups with a statistical test, Lee’s local Li can 

capture a local degree of residential segregation.  Another field that may effectively 

utilize the approach could be a comparison between two raster-based layers such as 

remotely sensed imageries (for an example of utilizing a local univariate spatial 

association measure in image processing, see Wulder and Boots 1998).  The utilization of 

local Lee’s Li could provide a feasible way of conducting the bivariate image 

generalization by generating a spatially smoothed layer of correspondence/discrepancy 

between two layers.   

The conceptualization and parameterization of spatially varying correlations or 

localized spatial correlations could profoundly impact the research practices in a whole 

gamut of analytical geographies.  This proposes a new research framework where 

researchers should be able not only to calibrate the relationship between two geographical 

variables in a spatial way, but also to assess how much each locale is deviated from the 

global trend, again in a spatial way.  Furthermore, an advance from this bivariate 

dimension to spatially varying multivariate associations will open a gate to a concept of 

spatially varying causalities.  This might lead to a recovery of the areal differentiation 

tradition at the heart of geographical information sciences. 
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CHAPTER 8 

 

 

8SPATIO-TEMPORAL DYNAMICS OF INCOME DISTRIBUTION ACROSS 

THE US LABOR MARKET AREAS 

 

 

8.1 Theoretical underpinnings of regional income convergence  

 

Even though the theme of dynamics in regional economic performance is not 

new, a rich body of literature has been devoted to the topic.  It seems that at least two 

factors are responsible for this trend.  First, a profound wave of socio-economic 

restructuring, occurring especially in advanced societies, has directed researchers to its 

implications for regional economic fortunes.  Second, the advent of the European Union 

not only as an international integration but also as inter-regional integration has revived 

interest in the versatility of regional development.  In this context, spatio-temporal 

dynamics of income distribution or regional income convergence or divergence across 

regions has a focal point, even though various academic camps provide different 

approaches to the issue.   
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At least three distinct academic threads are involved here.   

Firstly, the so-called ‘new growth theory’ based on a reformulation of 

neoclassical growth models (the inverted-U hypothesis by Kuznet 1955; Solow 1956; 

Williamson 1965), ‘endogenous growth theory’ (According to Armstrong (1995), Evans 

and Karras(1996), and de la Fuente (1997), Romer 1986; Lucas 1988; Romer 1990), and 

post-Keynesian traditions (according to Pons-Novell and Viladecans-Marsal (1999), 

Verdoorn 1949; Kardor 1966; 1975) have stimulated empirical works on the growth 

convergence issue (among others Barro and Sala-i-Martin 1991; 1995; for a review 

European Commission 1997; Button and Pentecost 1999).  With some exceptions, this 

theory tends to underline a general trend towards equilibrium, which is evidenced by σ-

convergence (a decrease of overall level of regional income inequality) and β-

convergence (a negative relation between regional income growth and initial regional 

income levels in a ‘growth regression’).   

Secondly, the California School inspired by the French Regulation School 

postulates the nature of the transition from Fordism to post-Fordism and formulates 

conditions for “New Industrial Spaces” (among others, Storper and Scott 1986; Scott 

1988a; 1988b; Storper and Walker 1989; Storper and Scott 1992; Storper 1997).  Even 

though the main focus of the School is on ‘successful regions’, rather than an overall 

picture regarding spatial restructuring, some empirical works on regional disparities are 

based on notions of the California School (e.g., Dunford and Perrons 1994; Rodriguez-

Pose 1994; Matthews 1996; Dunford 1996; 1997; Dunford and Smith 2000; Rodriguez-

Pose 1999).  The post-Fordist spatial economic landscape implied by this line of 

theorization seems to be divergent rather than convergent.  Some financial and producer 
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service centers and local milieus accommodating flexible specialization dominate over 

old Fordist industrial regions and small and medium-sized central places.  In short, 

Fordism induces employment growth and income convergence, whereas post-Fordism is 

characterized by growth slowdown and income divergence (Dunford and Perrons 1994).  

Third, ‘new economic geography’ referring to works by economists (among 

others Krugman 1991; Arthur 1994; Krugman 1995; Fujita et al. 1999) has significantly 

contributed not only to the topic of regional income convergence but also to economic 

geography and regional sciences (for reviews, Martin 1999; Fingleton 2001).  This camp 

provides a new insight into regional dynamics of income distribution.  Reduction in 

transport and transaction costs associated with increased integration (by way of 

globalization or certain forms of economic supranationalism) fuels spatial agglomeration 

and localization externalities, leading to income divergence among regions in terms of 

the increased specialization (Martin 1999; Martin and Tyler 2000; Martin 2001). 

 In general, the new growth theory accentuates convergence over divergence, 

while the California School and new economic geography lean towards divergence over 

convergence.  However, evidence is far from consistent.  Empirics, even from the same 

camp, often report different stories.  In the context of the US, for example, Evans and 

Karras (1996) and Sala-i-Martin (1996) find a consistent trend of convergence, while 

Quah (1996b) and Tsionas (2000; 2001) obtain evidence in the opposite direction.   

I argue that inconsistency in empirics on regional income convergence results not 

just from different data sources or different spatial units, but from commonly used 

methodologies themselves.  Most of all, regional analyses should take advantage of 

recent advances in spatial data analysis including spatial econometrics and spatial 
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statistics as already suggested (Nijkamp and Poot 1998; Griffith 1999; Fingleton 2000; 

2001).  In the context of spatio-temporal regional income dynamics, only a few utilize 

spatial analytical devices (Lopez-Bazo et al. 1999; Rey and Montouri 1999; Rey 2001).  

Accordingly I first point to common methodological drawbacks of current empirical 

studies, and second demonstrate how SAM-based ESDA techniques could make a 

significant improvement. 

 

8.2 A critical review of empirical studies on regional income dynamics: recovery 

of spatiality 

 
8.2.1 σ-convergence: numerical variance vs. spatial clustering 

 σ-convergence refers to the reduction of dispersions or variances in per capita 

incomes across regions over time, usually measured by the standard deviation or 

coefficient of variation of the regional income distribution (Barro and Sala-i-Martin 

1991; Rey 2001).  Sometimes, this type of convergence is called ‘strong convergence’, as 

apposed to ‘week convergence’ that refers to β-convergence (Nijkamp and Poot 1998).  

This notion of convergence is deeply rooted in neo-classical growth theory (Kuznets 

1995; Williamson 1965), and has been applied to numerous countries, summarized in 

Table 8.1.  The results show a trend of long-term convergence in regional income 

distribution with some discrepancies.   In the context of the US, four studies listed in 

Table 8.1 are based on state-level data and utilize measures of standard deviation or 

coefficient of variation.  Barro and Sala-i-Martin (1991) report that the US regional 

income distribution has been characterized by a succession of a decrease, 1880-1920, an  
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 Spatial Units Studies Years Indices* 
Europe EU regions Barro and Sala-i-Martin 

(1991) 
1950-1985 SD 

  Armstrong (1995c) 1975-1992 CV 
  Dewhurst and Mutis-Gaitan 

(1995) 
1981-1991 SD & CV 

  Quah (1996a) 1980-1989 SD 
  European Commission (1997) 1975-1993 SD & GC 
  Button and Pentecost (1999) 1977-1990 CV 
 EU countries Dunford and Perron (1994) 1960-1989 SD 
  de la Fuente (1997) 1870-1990 CV 
  Dunford and Smith (2000) 1980-1996 CV 
 UK regions Sala-i-Martin (1996) 1950-1990 SD 
  Chatterji and Dewhurst 

(1996) 
1977-1991 SD & CV 

  Dunford (1997) 1966-1992 CV 
  Dickey (2001) 1970-1995 SD & CV 
 France regions Sala-i-Martin (1996) 1950-1990 SD 
 Germany regions Sala-i-Martin (1996) 1950-1990 SD 
 Italy regions Sala-i-Martin (1996) 1950-1990 SD 
  Paci and Pigliaru (1999) 1951-1994 CV 
 Spain regions Mas, et al. (1995) 1955-1991 SD 
  Sala-i-Martin (1996) 1950-1990 SD 
  Cuadrado-Roura et al. (1999) 1955-1995 SD 
 Kangasharju (1998) 1970-1993 SD & CV 
 

Finland regions 
Kangasharju (1999) 1970-1993 SD & CV 

US US states Barro and Sala-i-Martin 
(1993) 

1880-1988 SD 

  Fan and Casetti (1994) 1950-1989 CV & ID 
  Sala-i-Martin (1996) 1880-1990 SD 
  Sum and Fogg (1999) 1939-1996 SD & CV 
  Rey and Montouri (1999) 1929-1994 CV 

World countries de la Fuente (1997) 1960-1985 SD 
OECD countries de la Fuente (1997) 1960-1985 SD 
China regions Zhao and Tong (2000) 1986-1994 SD & CV 

Others 

Japan prefectures Sala-i-Martin (1996) 1955-1990 SD 
* SD: Standard Deviation; CV: Coefficient of Variation; ID: Index of Dissimilarity;  
   GC: Gini Coefficient 
 
 
 
 

Table 8.1: Empirical studies on σ-convergence 
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increase, 1920-1930, a decrease, 1930-the mid-1970s, and an increase, the mid-1970s-

1988.  Sala-i-Martin’s later study (1996), with additional years, indicates a decrease in 

the early 1990s.  Fan and Casetti (1994) document similar results, that is, a decrease, 

1950-1980 and an increase, 1980-1989.    Rey and Montouri (1999) also show the 

identical picture; a decrease up until 1980, an increase during the 1980s, and a decrease 

during the early 1990s.  In UK, while most studies report a constant trend towards 

convergence, Chatterji and Dewhurst (1996) found that per capita GDP distribution 

across the UK regions has become more divergent.   

 Albeit the intuitive simplicity, σ-convergence has serious drawbacks.  It does not 

provide insights to processes that may be driving the narrowing (or widening) of regional 

incomes.  No information is provided regarding the relative movements of individual 

economies within the income distribution (Rey 2001:196).   In other words, a diminishing 

standard deviation of incomes does not tell whether some poorer economies catch up 

with the richest economies faster than some others (Sala-i-Martin 1996; Kangasharju 

1999; Tsionas 2000).  More serious problems that this approach bears, however, revolve 

around its lack of spatial perspectives. 

 First, studies based on σ-convergence should be enlightened by findings in the 

modifiable areal unit problem (MAUP).  Such measures as standard deviation and 

coefficient of variation are strongly influenced by the level of spatial aggregation.  In 

general, variance tends to decrease as the level of spatial aggregation escalates.  In other 

words, a larger spatial unit is inclined to display a smaller variance due to a smoothing 

effect that outliers loose their peculiarities as spatial aggregation proceeds (Fotheringham 

and Wong 1991; Wong 1996).  The magnitude and temporal trend of regional income 
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convergence could vary depending on the spatial configuration of a study.  Further, it 

may be unsustainable to compare the spatio-temporal trend among different countries 

each of which has a particular regionalization scheme (see Figure 6 in Sala-i-Martin 

(1996)). 

 Second, the numeric variance that σ-convergence is predicated on is immune to 

spatial clustering.  As illustrated in Figure 3.1, totally different spatial patterns can be 

generated from a numeric vector, and they cannot be differentiated by variance.  What 

this implies is that σ-convergence does not measure spatial convergence that belies what 

is implied by ‘regional convergence’.  It is necessary, thus, for researchers to look into 

the spatio-temporal trend of spatial dependence in income distribution if they are to 

obtain a substantive understanding of what has occurred in reality.  In this sense, Wheeler 

(2001) reports from spatial correlogram analyses based on the US county level that 

spatial dependence in regional income growth is well pronounced and that spatial 

autocorrelation drops off to zero over a distance of roughly 2000 miles, with a strong 

stability within 40 miles.  More important aspects of spatial dependence include the 

presence of inter-regional interaction, co-dependence, or spillover effects in regional 

income distributions (Quah 1996a; Rey and Montouri 1999; Podriquez-Pose 1999; Ying 

2000; Martin 2001; Rey 2001).  Quah (1996a:954) correctly contends that ‘physical 

location and geographical spillover matter more than do macro factors’.  In this sense, a 

univariate SAM should be utilized to gauge spatial clustering not only for each year but 

also for growth rates between years.  Surprisingly, only few papers recognize the 

importance of spatial dependence in regional income distributions and utilize univariate 
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SAMs such as Moran’s I and Geary’s c (European Commission 1997; Lopez-Bazo et al. 

1999; Rey and Montouri 1999; Rodriguez-Pose 1999). 

Third, global bivariate SAMs could help find breakpoints in the temporal trend.  

When global bivariate SAMs for consecutive years could reveal when significant spatial 

restructurings occur.  This is expected to correspond to what differentials in global 

univariate SAMs between consecutive years may imply. 

Fourth, σ-convergence is global in nature such that it focuses only on an average 

aspect, or trend, ignoring the possible spatial heterogeneity often pronounced in the 

spatial organization of income (Rey and Montouri 1999; Ying (2000).  This point also 

applies to global SAMs.  For each year, hot spots and cold spots can be identified.  A 

series of spatial distributions of income over years could reveal a trajectory of spatial 

restructuring over time.  In this sense, local univariate SAMs should be utilized as 

attempted (Lopez-Bazo et al. 1999; Rey and Montouri 1999; Ying 2000; Rey 2001). 

Fifth, a well-designed spatial unit, other than arbitrary ones such as states and 

census regions, is needed.  A viable spatial unit could be a regional labor market area 

where a vast majority of people live and work, and an intra-regional functional 

integration is distinctive to a certain degree.  In the context of the US, Lee (1999) 

investigates existing regionalization schemes satisfying the notion of regional labor 

market and identifies 17 county-based functional regions.  Among them, CZ (Commuting 

Zone), BTA (Basic Trading Area), LMA (Labor Market Area), and BEA (BEA 

Economic Area) could be reliable candidates for research on US regional income 

convergence.  Use of regional labor market areas is expected to reveal the versatile nature 

of regional income disparities more efficiently and thoroughly.   
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8.2.2 β-convergence: numeric correlation vs. spatial co-patterning 

 β-convergence was introduced by Barro (1991), and Barro and Sala-i-Martin 

(1991) based on the neo-classical growth theory to capture the catch-up hypothesis that 

poorer regional economies grow faster than richer regional economies.  There will be β-

convergence if a negative relation is found between the growth rate of per capita income 

and the initial level of income (sometimes referred to as ‘regression to the mean’ or 

‘mean reversion’) (Sala-i-Martin 1996:1327).  This ‘weak convergence’ (Nijkamp and 

Poot 1998:26), as apposed to ‘strong convergence’ of σ, often takes a regression form as: 
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where  is a year-differential,  is income level in region i at a starting year,  is 

income level in region i at an ending year.  However, a more complicated form has been 

preferred in empirical studies that is given (Sala-i-Martin 1996; Nijkamp and Poot 1998): 
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From equation 8.1, an estimated value of β is a slope coefficient in a regression of 

regional income growth rates on initial regional income level (Nijkamp and Poot 1998; 

Martin 2001), which constitutes a reason why work based on β-convergence has been 
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called ‘growth regression approach’ (Martin 2001:62).  More often, however, the 

parameter of β is interpreted as the speed at which economies approach their own steady 

states or poorer regions catch up with richer ones (Sala-i-Martin 1996; Kangasharju 

1999). When some other shock variables, such as industrial mix and regional dummies, 

are included in the equation, it calibrates ‘conditional convergence’ as opposed to 

‘absolute convergence’ attributing to the original specification (Barro and Sala-i-Martin 

1991; Armstrong 1995; Sala-i-Martin 1996; Dickey 2001).  From both equations, a 

positive value of β indicates economic convergence across regions. 

 β-convergence is usually preferred over σ-convergence in empirical studies, 

because the former conveys more information about regional income convergence than 

the latter.  Firstl, β-convergence is a necessary condition for σ-convergence (Nijkamp and 

Poot 1998).  Without β-convergence, σ-convergence won’t happen.  In other words, a 

substantial change in the ranking of regions in economic performance could happen 

without being captured by σ-convergence.  Thus, β-convergence does not imply σ-

convergence (Barro and Sala-i-Martin 1991; Sala-i-Martin 1996; Nijkamp and Poot 1998; 

Kangasharju 1999; Tsionas 2000).  However, there are disagreements: the convergence 

rate does not mean that a poorer region catches up with a richer region at that rate 

(Tsionas 2000); the convergence may be unrelated to, or uninformative for, the dynamics 

of economic growth (Quah 1996).   

 Table 8.2 summarizes studies on regional income dynamics based on β-

convergence.  Almost all studies listed report consistent convergence at a β of about 0.02, 

which means that regions, wherever they are, tend to converge at a speed of 

approximately 2% per year (Barro and Sala-i-Martin 1991; Armstrong 1995; Sala-i- 
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 Spatial Unites Studies Years 
Europe EU regions Barro and Sala-i-Martin (1991) 1950-1985 
  Barro and Sala-i-Martin (1995) 1950-1990 
  Armstrong (1995a) 1950-1980 
  Armstrong (1995c) 1975-1992 
  Dewhurst and Mutis-Gaitan (1995) 1981-1991 
  Sala-i-Martin (1996) 1955-1990 
  European Commission (1997) 1975-1993 
  Button and Pentecost (1999) 1975-1990 
 UK regions Sala-i-Martin (1996) 1950-1990 
 France regions Sala-i-Martin (1996) 1950-1990 
 Germany regions Sala-i-Martin (1996) 1950-1990 
 Italy regions Sala-i-Martin (1996) 1950-1990 
 Spain regions Mas et al. (1995) 1955-1991 
  Sala-i-Martin (1996) 1950-1990 
  Cuadrado-Roura et al. (1999) 1955-1993 
 Finland regions Kangasharju (1998) 1974-1993 
US US states Barro and Sala-i-Martin (1991) 1880-1988 
  Blanchard and Katz (1992) 1950-1990 
  Evans and Karras (1996) 1929-1991 
  Sala-i-Martin (1996) 1880-1990 
  Sum and Fogg (1999) 1939-1996 
  Tsionas (2000) 1978-1996 
Others OECD countries Andres et al. (1996) 1960-1990 
  de la Fuente (1997) 1960-1985 
 Canada provinces Sala-i-Martin (1996) 1961-1991 
 Japan prefectures Sala-i-Martin (1996) 1955-1990 
 
 
 
 
 

Table 8.2: Empirical studies on β-convergence 
 

 143 



Martin 1996).  For example, β-coefficient for 48 US states was estimated at 0.017 during 

1880-1990 (Sala-i-Martin 1996). This striking coincidence across numerous countries or 

supranational entities such as the European Union arguably verifies the virtues of neo-

classical growth theory.  Although the original formulation is based on an assumption of 

closed Solow economies (Blanchard 1991:159), additional considerations such as labor 

mobility, capital mobility, and technology transfer adjust the theorem equally working 

across open economies such as countries and supranational regimes (Barro and Sala-i-

Martin 1991; Blanchard 1991; Armstrong 1995). 

 The alleged myth of regional income convergence, however, has been challenged 

by theoretical arguments and empirics.  Quah (1996b:1355) contends that “uniformity is 

due to something relatively uninteresting, namely, the statistical implications of a unit 

root in the time-series data”.  In the same vein, Martin (2001:62) argues that “the growth 

regression approach has an inbuilt bias towards identifying convergence, so that the 

results may even over-estimate what little convergence has occurred.”  Tsionas (2000) 

reports that there is a positive relationship between initial levels of regional income and 

income growth rates.  A finding by most ardent advocates for the convergence thesis 

(Barro and Sala-i-Martin 1991) says that β-coefficient turns negative during the 1980s 

implying a possible divergence in recent years.   

 Again, I would argue that studies based on β-convergence should be edified by 

findings from spatial data analysis.   

First, as far as the regression equation is calibrated based on the OLS algorithm, 

the approach is obviously subject to problems of spatially autocorrelated errors.  Given 

various types of spatial interactions among regions, geographically adjacent regions tend 

 144 



to show a similar trend in economic performance, which will be reflected in regression 

residuals.  Quah (1996:954) correctly points out that ‘no region can be studied in 

isolation independently of others’.  When a significant spatial autocorrelation is present 

in residuals, significance tests for coefficients may be flawed even though coefficients 

themselves are still unbiased (Anselin and Griffith 1988; Fotheringham and Rogerson 

1993).  Thus, the regression equation in 8.1 and 8.2 should be calibrated by a spatial 

autoregressive model (Armstrong 1995b; Molho 1995; Bernat 1996; European 

Commission 1997; Mencken 1998; Buettner 1999; Fingleton 1999; Rey and Montouri 

1999; Pons-Novell and Viladecans-Marsal 1999; Martin 2001).  When this problem is 

associated with other statistical symptoms such as non-normality, structural instability, 

and misspecification (Tsionas 2000), the whole research becomes unsustainable. 

 Second, as Martin (2001:62) correctly points out, the β-convergence approach is 

based on an unreliable assumption that ‘the underlying convergence process is identical 

across all regions, whereas in reality it is may well vary from region to region, or between 

different types or groups of regions’.  This resonates with Quah’s argument (1996:954) 

that ‘regression-based approaches, averaging across either cross-section or time series 

dimensions, are not useful … such methods construct a representative, and cannot 

provide a picture of how the entire cross-section distribution evolves’.  This issue of 

spatial heterogeneity can be addressed by some other multivariate spatial statistical 

techniques such as expansion method (Casetti and Jones 1987), expanded rank-size 

function (Fan and Casetti 1994; Lopez-Bazo et al. 1999), Markov chain matrix (Quah 

1993; Quah 1996b; Fingleton 1997; 1999; Rey 2001), and geographically weighted 
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regression (GWR) (among others, Brunsdon et al. 1996; 1998a, 1998b; 1999a; 1999b; 

Fotheringham et al. 1997a; 1997b; 1998; 2000). 

 Third, as far as ‘absolute convergence’ without any other additional variables is 

concerned, β-convergence is nothing but a correlation between initial income levels and 

income growth rates.  A β coefficient from an OLS regression is directly related to 

correlation between two variables. When a bivariate relation between initial income 

levels and income growth rates are spatially clustered, a global bivariate SAM should 

replace aspatial correlation measure such as Pearson’s r.  Furthermore, there is a good 

reason to believe that the averaged correlation coefficient does not apply to the whole 

study area.  Rather, local correlations may be highly heterogeneous.  In the context of 

income convergence, some initially poor regions may have accomplished a certain level 

of catch-up, whereas some others may still fall behind.  This spatial heterogeneity can 

only be tackled by local bivariate SAMs and related ESDA techniques illustrated in 

Chapter 7.   

 

8.3 Spatio-temporal income dynamics across the US labor market areas 

 

8.3.1 Research design 

 Sources of regional incomes are dictated by spatial aggregation level.  In general, 

larger spatial units, such as census regions and states, provide more affluent data sources.  

Since those spatial units are very often arbitrary regions, rather than functional regions, 

their use prevents researchers from obtaining a ‘ground-level’ reality.  The county as a 

spatial unit is not a good choice either, simply because a substantive proportion of labor 
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force commutes across county boundaries.  Thus, it would be more plausible to use a 

regionalization scheme in which counties are aggregated into spatial labor market areas.   

In this study, the major spatial units are Labor Market Areas (LMAs) (Killian and 

Tolbert 1993; Tolbert and Sizer 1996).  Their definition is first based on a commuting 

flow matrix among counties, and a hierarchical cluster analysis aggregates 3,141 counties 

into 741 commuting zones (CZs).  The CZs are then aggregated into 394 LMAs in terms 

of a minimum population requirement (100,000) and inter-CZ commuting flows (Tolbert 

and Sizer 1996).  States and another function regions, e.g. BEAs (Bureau of Economic 

Analysis Economic Areas), are utilized for supplementary purposes along with CZs.  

BEAs are also based on commuting flows among counties, but the metropolitan status of 

a county plays a crucial role (Johnson 1995).  The BEA scheme divides the whole US 

into 172 units.  Since the study focuses on the conterminous US, the number of spatial 

units in each scheme is reduced.  Finally, 48 states plus the District of Columbia, 170 

BEAs, 391 LMAs, and 722 CZs are utilized.  CZs are completely nested in LMAs, and 

any of BEAs, LMAs, and CZs is not restricted by the state boundaries. 

Per capita personal income data are used for this empirical study.  Data sets have 

been collected and maintained by the Bureau of Economic Analysis, and are available via 

REIS (Regional Economic Information System) at the county level from 1969 to 1999.  

Since both county population and personal income aggregate at a county are provided, 

per capita personal income at any spatial aggregates is easily computed as long as the 

applied regionalization scheme is conducted at the county level.  An additional 

consideration has been given in each spatial aggregation process in order to deal with 

county boundary changes over time.   
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Effective use of ESDA techniques presented in Chapter 7 is crucial for this 

application part.  Each technique is utilized to reveal a particular aspect of spatio-

temporal income dynamics in the US.  The entire thirty years are divided into three sub-

periods, 1969-1979, 1979-1989, and 1989-1999, and four years, 1969, 1979, 1989, and 

1999, are utilized as benchmarks to provide particular snapshots, allowing for tracking 

spatio-temporal evolution.   

This empirical study is largely divided into five parts. 

First, spatial distributions of per capita income across LMAs are explored and 

significant spatial clusters are detected for the four different years.  Quantile maps allow 

for an effective comparison among the four different spatial patterns.  Local-S 

significance and Geary significance maps identify significant spatial clusters for each 

year and a comparison of different years is expected to reveal temporal heterogeneity in 

spatial dependence of regional income distributions. 

Second, temporal trends in regional income distribution over time are examined.  

Global Pearson’s r as well as Lee’s L are utilized to capture the degree of 

continuity/change over time.  Bivariate ESDA techniques including local-r scatterplot, 

local-r and local-L scatterplot maps, and local-L significance map reveal spatial 

heterogeneity in temporal change during 1969-1999 across LMAs. 

Third, σ-convergence is examined in conjunction with spatial clustering.  

Temporal trend of coefficients of variation are computed for various regionalization 

schemes, including states, BEAs, LMAs, and CZs, to investigate effects of MAUP.  

Global Moran’s I is utilized to gauge the degree of spatial clustering.  The relationship 

between coefficients of variation and Moran’s Is is investigated for LMAs, and an 

 148 



attempt is undertaken to provide a feasible explanation of the relationship.  Distributions 

of spatial outliers detected by Moran significance maps are expected to provide a new 

insight into the relationship between numerical variance and spatial clustering, and its 

temporal trends. 

Four, β-convergence, a negative relationship between an initial income level and 

income growth rate between years, is critically evaluated.  Global Pearson’s r and Lee’s L 

are computed for different sub-periods and for different regionalization schemes.  Spatial 

autocorrelation in OLS residuals is assessed and SAR (simultaneous autoregressive) 

models are introduced to alleviate the problem of spatially autocorrelated errors.  Spatial 

patterns resulting from a decomposition of a SAL model effectively demonstrate 

necessities of using spatial autoregressive models when spatial autocorrelation in 

residuals is significant.   

Five, spatial aspects of β-convergence are investigated.  Local-r and local-L 

scatterplot maps and local-L significance maps are utilized to explore spatial 

heterogeneity in β-convergence.  The general trend of a negative relationship between 

initial income levels and income growth rates is spatially evaluated; some following the 

trend; but others not. 

 

8.3.2 Regional income distribution and identification of spatial clusters 

 Figure 8.1 show spatial patterns of per capita personal incomes across LMAs for 

four benchmark years, 1969, 1979, 1989, and 1999.  For comparison, a quantile 

classification scheme is applied to each map.  One finding is that the spatial distribution 

of per capita income has not significantly changed over the 30 years.  The persistent  
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spatial structure involves higher income levels in the Megalopolis, the Midwest, and 

western coastal regions, southern Florida, and lower income levels in areas from the 

northwest Mountain region to southern Texas, most areas of the South, the northwestern 

part of the Midwest, and the Ohio River Valley (ORV) region (Brown et al. 1996; 1999; 

Brown 1999; Brown et al. 2001).  Table 8.3 lists the top and bottom ten LMAs in terms 

of per capita income for four years, 1969, 1980, 1990, and 1999.  Spatio-temporal 

continuation becomes more obvious from the list.  Five out of top 10 LMAs in 1969 

occupy the top five spots in 1999, and 7 out of bottom 10 LMAs in 1969 have not lost 

their seats in the 1999 bottom 10 list.  The top 10 list for 1999 shows that three LMAs 

centered on Boston, Denver, and Minneapolis emerge for the first time which have been 

regarded as cities successfully adjusting to new economic conditions in the post-Fordist 

era.   

In spite of the continuation of the dominant spatial morphemics, several spatial 

shifts are also detected.  First, the traditional industrial cores in the Midwest have been 

spatially disintegrated.  Especially areas centered on Detroit have lost much of its internal 

integrity.  Second, some areas in the South, particularly the Pediment, have experienced 

relatively higher income growth.  Those areas include Winston-Salem, Charlotte, and 

Raleigh in North Carolina, Birmingham in Alabama, and Austin in Texas.   

This finding well corresponds to Brown’s thesis of ‘continuity amidst 

restructuring’ (Brown 1999; Brown et al. 2001).  He contends (Brown et al. 2001) that 

“while many types of change occurred through the Fordist/Post-Fordist transition, they 

are not necessarily manifest in terms of spatial variation over time … all regions declined 

early in this transition and, apparently, more or less to the same degree … yet, most of the  
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Years Top 10 Bottom 10 
1969 San Francisco, CA 

New York, NY 
Bridgeport, CT 
Chicago, IL 
Newark, NJ 
San Jose, CA 
Wilmington, DE 
Los Angeles, CA 
Detroit, MI 
Reno, NV 

Not distinguishable city, KY 
Brownsville, TX 
Laredo, TX 
Greenville, MS 
Not distinguishable city, KY 
Clarksdale, MS 
Richmond, KY 
McComb, MS 
Somerset, KY 
Tuscaloosa, AL 

1979 San Francisco, CA 
Casper, WY 
San Jose, CA 
Reno, NV 
Chicago, IL 
Houston, TX 
Newark, NJ 
Los Angeles, CA 
Bridgeport, CT 
New York, NY 

Laredo, TX 
Brownsville, TX 
Somerset, KY 
Gallup, NM 
McComb, MS 
Richmond, KY 
Hinesville, GA 
Clarksdale, MS 
Roanoke Rapids, NC 
Not distinguishable city, MO 

1989 West Palm Beach, FL 
Bridgeport, CT 
San Francisco, CA 
Newark, NJ 
New York, NY 
Baltimore, MD 
Boston, MA 
San Jose, CA 
Brick Township, NJ 
Sarasota, FL 

Laredo, TX 
Brownsville, TX 
Gallup, NM 
Not distinguishable city, KY 
McComb, MS 
Greenville, MS 
Richmond, KY 
Somerset, KY 
West Memphis, AR 
Provo, UT 

1999 San Jose, CA 
San Francisco, CA 
Bridgeport, CT 
New York, NY 
Newark, NJ 
West Palm Beach, FL 
Boston, MA 
Denver, CO 
Baltimore, MD 
Minneapolis, MN 

Brownsville, TX 
Gallup, NM 
Laredo, TX 
Not distinguishable city, KY 
Somerset, KY 
Greenville, MS 
El Paso, TX 
Not distinguishable city, KY 
McComb, MS 
Yuma, AZ 

(Cities are largest ones in LMAs) 
 
 
Table 8.3: Top and bottom 10 LMAs in per capita personal income, 1969, 1979, 1989, 
and 1999 

 152 



formerly dominant regions rebounded, albeit with a different economic structure (e.g., 

service or high-technology industries rather than Fordist-type traditional industry)”.  

Even though theoretical underpinnings seeking to explain ‘spatial fixity’ over ‘spatial 

plasticity’ in economic performance have been proposed, empirical studies that might 

evidence the theoretical notions are very few.  Among others, Melachroinos and Spence 

(1999) show how ‘sunk costs’ function as a change-inhibiting factor in regional economic 

performance across Greece prefectures from 1984 to 1993. 

To identify spatial clusters for each pattern, I utilize the local-S significance map 

technique as illustrated in Figure 8.2.  Since local Si is relatively liberated from the 

tyranny of reference areas, it works better than local Moran’s Ii in identifying spatial 

clusters.  Per capita income is first transformed by natural logarithm, and a one-tailed test 

at the 95% confidence level based on the conditional randomization presented in Chapter 

6 is utilized.  Figure 8.2 clearly shows the spatio-temporal dynamics in regional income 

distribution.  Two crucial observations are made.  First, the most dramatic spatial change 

had occurred in the 1980s.  Second, internal integrity of spatial clusters has been 

substantively eroded over 30 years.  

The 1969 map displays five distinctive spatial clusters: the Megalopolis, the 

Midwest industrial belt, the Pacific as richer regimes, and the ORV region and the South 

as poorer regimes.  In 1999, the spatial regimes are still seen, but their internal integrity 

has significantly been eroded: the Midwest industrial belt has been largely disintegrated; 

the Pacific has shrunken to the San Jose-San Francisco area and the Seattle area; the poor 

parts of the South are now confined to the Lower Mississippi; spatial clustering is only 

found around Chicago area within the Midwest industrial belt.  In contrast, the  

 153 



 

Fi
gu

re
 8

.2
: L

oc
al

-S
 si

gn
ifi

ca
nc

e 
m

ap
s:

 sp
at

ia
l c

lu
st

er
s i

n 
pe

r c
ap

ita
 p

er
so

na
l i

nc
om

e 
ac

ro
ss

 th
e 

U
S 

LM
A

s 

��
��

��
��

��
��

��
��

��
�

�
��

�
��

�
�	


��
�

��	
�
�

�

��

���
�

��
��

	��
	�	�

��
�

��

��

�
���

��
��

��
��

 

 154 



Megalopolis and the southern Florida have maintained regional homogeneity as higher 

income areas.  Areas in Colorado centered on Denver, Colorado Springs, and Fort Collins 

have emerged as a new hot spot during the 1990s. 

The 1979 map in Figure 8.2 show that northwestern mountain areas centered on 

Casper and Laramie in Wyoming appeared as significant higher income clusters.  It also 

displays that the poor South had expanded to east and the Megalopolis had shrunken 

during 1970s.  The trend, however, substantively reversed during the 1980s: the 

northwestern high income centers disappeared; the Megalopolis had expanded; the poor 

South had be confined to the Lower Mississippi.  The most notable change in during the 

1990s seen from the 1999 map in Figure 8.2 is the shrinking California.   

Figure 8.3 examines different aspects of spatial dependence in regional income 

distribution.  As discussed in Chapter 3 and Chapter 7, local Geary’s ci is better at 

assessing local homogeneity in comparison with local Lee’s Si and Moran’s Ii that are 

better at detecting spatial clusters.  Simply, local Geary’s ci captures local variance.  

Spatial clusters do not necessarily mean that there is litter variance within them; a high 

level of internal heterogeneity with a spatial cluster identified by local Si or Ii is often 

observed.  Geary significance maps in Figure 8.3 reveal that there are substantive internal 

variance within the Pacific region in 1969 and 1979 detected as spatial clusters in Figure 

8.2, and suggest that rich clusters in 1989 and 1999 possess higher level of internal 

homogeneity than poor clusters.  While the 1999 maps in Figure 8.2 and in Figure 8.3 are 

almost identical for high clusters, they are significantly different for poor clusters. 

 

 155 



 

Fi
gu

re
 8

.3
: G

ea
ry

 si
gn

ifi
ca

nc
e 

m
ap

s:
 lo

ca
l h

om
og

en
ei

ty
 in

 p
er

 c
ap

ita
 p

er
so

na
l i

nc
om

e 
ac

ro
ss

 th
e 

U
S 

LM
A

s 

��
��

��
��

��
��

��
��

��
�

�
��

�
��

�
�	

��

�
��


��
��

��
��

�	�
�

��
���

	��
	�	�

��
�

�	
��

	�	�
��

�

 

 156 



8.3.3 Spatial co-patterning and bivariate spatial clusters in regional income 

growth  

 The simplest way to examine the evolution of regional income distribution is to 

calculate correlations among spatial patterns for different years.  Table 8.4 summarizes 

the computed bivariate associations between starting years and ending years according to 

Pearson’s r and Lee’s L.  For all regionalization schemes, simple correlations between 

1969 and 1999 income distributions are extremely high (highest in States (.887) and 

lowest in CZs (.735)), implying the dominance of continuity.  The fact that values for 

CZs are always lower than ones for states is associated with the modifiable areal unit 

problem that bivariate correlations usually rise as spatial aggregation proceeds.  Among 

the three sub-periods, lowest correlations are found in the period of 1979-1989 in 

Pearson’s r and Lee’s L.  This means that restructuring in the regional income 

distribution occurred more markedly during the 1980s in comparison with other periods, 

and suggests that growing and/or declining regions are spatially dispersed.  This 

corresponds observations from Figure 8.2 and 8.3 where an obvious discontinuity in 

spatial patterns is found between 1979 and 1989 maps. 

 Effects of the MAUP do not appear in Lee’s L unlike in Pearson’s r.  This is 

partially due to the fact that spatial measures are more resistant to effects of the MAUP 

than aspatial ones.  Significant Lee’s Ls indicate that bivariate spatial dependence is 

highly pronounced for all periods.  When bivariate spatial dependence is present, 

statistical tests for Pearson’s correlation coefficients could be flawed, because the degree 

of freedom of n-2 cannot be obtained.  Practically, a high and significant Lee’s L 

indicates that similar local correlations are spatially clustered.  An interesting finding is  
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Regionalization 
Scheme Years Pearson’s r Lee’s L 

States (49) 1969-1999 0.887 0.419 
     1969-1979 0.933 0.426 
     1979-1989     0.816 0.331 
     1989-1999    0.972 0.478 
BEAs (170) 1969-1999 0.796 0.384 
     1969-1979 0.912 0.527 
     1979-1989 0.805 0.385 
     1989-1999    0.950 0.413 
LMAs (391) 1969-1999 0.810 0.416 
     1969-1979 0.916 0.555 
     1979-1989 0.843 0.437 
     1989-1999    0.952 0.444 
CZs (722) 1969-1999 0.735 0.396 
     1969-1979 0.875 0.536 
     1979-1989 0.810 0.430 
     1989-1999 0.934 0.477 

             (All the values are significant at the 95% confidence level) 
 
 
 
 
Table 8.4: Correlations between 1969 and 1999 per capita income distributions 
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that Lee’s L is much higher during 1969-1979 than during 1989-1999 for all 

regionalization schemes except for states, even though the latter has higher Pearson’s r 

than the former.  This means that regional income distributions have become more 

spatially dispersed in later years so that the level of spatial co-patterning was much higher 

in the 1970s than in the 1990s.  Hence, we may need to make a clear distinction between 

two spatial processes: hierarchical and contagious processes.  Assuming an identical 

Pearson’s r, hierarchical processes yield a less degree of spatial co-patterning between 

two snapshots than contagious processes.  Although contagious processes driven by 

various forms of spatial interaction between adjacent LMAs are evident in the income 

distribution through all periods, the continuation of high or low values in the 1990s 

occurred in a rather hierarchical way than in the 1970s.  Obviously, the revival of large 

cities in the 1990s has led to this trend.  This will be more intensively discussed later on. 

 As can be seen from positive and high Pearson’s r and Lee’s L between 1969 and 

1999 regional income distributions in Table 8.4, regional income disparity in the US over 

last 30 years is characterized by continuity rather than change.  However, it should not be 

assumed that each local area equally follows the global trend.  Bivariate ESDA 

techniques presented in Chapter 7 are expected to reveal spatial heterogeneity in income 

trajectory over last 30 years that each local has experienced. 

 Figure 8.4 utilizes local-r scatterplot and scatterplot map between 1969 and 1999 

income levels.  A local-r scatterplot (Figure 8.4-(a)) is created by putting z-scores of 1969 

per capita income on the x-axis and ones of 1999 income on the y-axis.  The scatterplot 

categorizes local bivariate associations into four classes: low-low (lower-than-average 

income in 1969 and lower-than-average income in 1999), low-high, high-low, and high- 
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(a) Local-r scatterplot 

 

200 0 200 400 Miles

Local-r Classes
Low 1969 Income - Low 1999 Income
Low 1969 Income - High 1999 Income
High 1969 Inocme - Low 1999 Income
High 1969 Income - High 1999 Income

 
(b) Local-r scatterplot map 

 
 
Figure 8.4: Local-r scatterplot and scatterplot map of logarithmic per capita personal 
income across the US LMAs, 1969-1999 

 160 



high.  As expected from a high correlation between 1969 incomes and 1999 incomes, 

most observations fall within either the high-high quadrant or low-low quadrant.  The 

local-r scatterplot map (Figure 8.4-(b)) shows that a significant number of areas in the 

Midwest and the Pacific regions have fallen from higher-than-average category to lower-

than-average category during the 30 years.  It may also be interesting to notice that only 

20 LMAs has experienced a shift from the lower-than-average class to the higher-than-

average class, and most of them are located in the South.   

 Figure 8.5 provides a more distinctive pattern.  Since z-scores are replaced by 

spatially smoothed z-scores as defined in Chapter 3, the resulting scatterplot map (Figure 

8.5-(a)) benefits pattern detection.  Several distinctive patters are detected.  First, the 

traditional core areas are characterized by continuation of a higher income level with 

LMAs experiencing the high-low transition.  Second, the Pacific counterpart shows a 

similar pattern, that is, most areas still enjoy higher-than-average income level and some 

occasional LMAs suffer from economic downturns.  Third, areas from the Intermountain 

through the South to the southern Atlantic coast remain poor except for southern Florida.   

Within those areas, most of the low-high swing areas reside.  They include areas in the 

Pediment, the Dallas-Houston corridor in Texas, and northern New Mexico centered on 

Santa Fe.  Figure 8.5-(b) selects areas with a statistical significance from Figure 8.5-(a).  

Bivariate spatial hotspots or spatio-temporal hotspots include the Megalopolis, the central 

California, Chicago areas, and spatio-temporal coldspots include the lower Mississippi, 

the ORV region, the southern Texas, and northwestern New Mexico, part of the Four 

Corners.  
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Figure 8.5: Local-L scatterplot map and significance map of logarithmic per capita 
personal income across the US LMAs, 1969-1999 
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8.3.4 σ-convergence and spatial dependence of income distribution 

 Figure 8.6 displays the temporal trend of income dispersion measured by the 

coefficient of variation (CV) for different regionalization schemes.  First, it should be 

noted that larger spatial units, states and BEAs, have larger CVs than smaller spatial 

units, LMAs and CZs.  As mentioned, it happens because variances decrease as spatial 

aggregation proceeds.  Strikingly, there is no evidence of income convergence during 

1969-1999.  Perhaps, the last 30 years is too short to display distinctive trends of 

convergence/divergence.  A graph from Rey and Montouri (1999) shows a constant 

decrease of CV from 1930 and 1975 followed by a relatively flat line.  However, some 

interesting patterns are detected.  First, albeit a cyclical fluctuation, a general trend is a 

convergence until the mid-1970s and then a divergence.  Especially during the late 1990s, 

the trend of divergence is remarkable.   

 Figure 8.7 provides a different insight into regional income convergence. A CV 

(coefficient of variation) trend for LMAs is compared to that of Moran’s I.  A complete 

correspondence between them indicates that income convergence/divergence is directly 

associated with spatial dispersion/clustering.  Obviously, a contagious process of income 

distribution is more likely to result in spatial convergence or clustering than a hierarchical 

process.  First, spatial autocorrelation measured by Moran’s I gradually decreases during 

the years, which means that spatial clustering is less pronounced in recent years and can 

be evidenced from Figure 8.1 and Figure 8.2.  Second, two peaks in income divergence in 

terms of CV, one in 1989 and the other in 1999, seem to be oppositely related to spatial 

clustering.  The 1989 divergence exactly corresponds to spatial clustering in Moran’s I, 

while the 1999 divergence is oppositely associated with Moran’s I.  It can be concluded  
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Figure 8.6: Coefficients of variation of per capital personal income in the US, 1969-1999 
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Figure 8.7: Coefficients of variation and Moran’s Is of per capital personal income across 
the US LMAs, 1969-1999 
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that income growth or decline may have happened within particular spatial regimes 

during the late 1980s.  Thus, the trend towards income divergence may have been driven 

by a contagious process.  In contrast, another trend of the income divergence in the late 

1990s may have been dictated by a hierarchical spatial process such that income growth 

or decline occurred at particular classes of regions that may be represented by population 

size.   

This argument may be advocated by Figure 8.8 where spatial outliers, defined as 

areas significantly different from their neighbors, are displayed.  Throughout the years, 

significant spatial outliers of high-low association (high values surrounded by low 

values) are found in the South.  When 1979 map is compared to 1989 map in Figure 8.8, 

one may notice that the number of spatial outliers decreased, indicating spillover effects 

during the 1980s.  Especially, disappearance of spatial outliers in the Pediment during the 

1980s, e.g. Charlotte, Atlanta, and Birmingham, are clearly associated with spillover 

effects (see 1979 and 1989 maps in Figure 8.1).  In contrast, 1999 map in Figure 8.8 

show that more areas have become significant spatial outliers during the 1990s.  This 

implies that income distribution had been more selective in a spatial sense.  For example, 

Charlotte and Birmingham in the Pediment resurrect as spatial outliers, and areas, 

including Columbus in Ohio, Traverse City in Michigan, Raleigh in South Carolina, San 

Antonio in Texas, and Phoenix in Arizona are newly identified as spatial outliers of high-

low association.  Re-orientation of economy towards selective large cities or economic 

aggravation in already-lagged areas, for example, may explain the trend.  Apparently, this 

type of spatial process tends to reduce the level of spatial clustering, depending on a 

given spatial scale, LMAs.   
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8.3.5 β-convergence and spatially autocorrelated errors 

 The relationship between an initial income level and an income growth rate 

during a given period of time constitutes the rationale of β-convergence.  Table 8.5 shows 

correlations between the two variables computed with different regionalization schemes.  

Pearson’s correlation coefficient column indicates that there is a significant negative 

relationship between initial income levels and income growth rates during 1969-1999, 

which may confirm the income convergence hypothesis.  However, the latest period, 

1989-1999, show a very poor correlation between the two variables especially in LMAs 

and CZ.  This is mainly due to the fact that income divergence is most pronounced in the 

period as seen in Figure 8.6.   

The Lee’s L column, however, reports contrasting information that needs to be 

explained.  Albeit the lowest Pearson’s r (-0.175) in the latest decades across LMAs, 

Lee’s L is larger than one in 1979-1989 for all regionalization schemes.  Since, Lee’s L is 

larger when spatial autocorrelation of variables involved is larger in a technical sense, 

income growth rates are more spatially clustered in the 1980s than in the 1980s, given 

information that levels of spatial autocorrelation in 1979 and 1989 are almost identical, 

seen from Figure 8.6.  Another finding is that the highest negative correlation in both 

columns is found in the period of 1969-1979.  Especially Pearson’s r between 1969-1979 

is higher in magnitude than that for the entire period, 1969-1999.  It can be concluded the 

catch-up forces were vivid in the 1970s and then finally faded away in the 1990s.   

 Figure 8.9 is an OLS regression between logarithmic 1969 income levels and 

annual income growth rates between 1969 and 1999, following equation 8.1.  The slope  
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Regionalization 
Scheme Years Pearson’s r Lee’s L 

States (49) 1969-1999 -0.370* -0.252* 
     1969-1979 -0.684* -0.447* 
     1979-1989     0.045       0.015 
     1989-1999    -0.373* -0.335* 
BEAs (170) 1969-1999 -0.490* -0.413* 
     1969-1979 -0.529* -0.336* 
     1979-1989 -0.244* -0.198* 
     1989-1999    -0.217* -0.310* 
LMAs (391) 1969-1999 -0.481* -0.440* 
     1969-1979 -0.548* -0.385* 
     1979-1989 -0.201* -0.177* 
     1989-1999    -0.175* -0.276* 
CZs (722) 1969-1999 -0.464* -0.353* 
     1969-1979 -0.491* -0.298* 
     1979-1989 -0.242* -0.167* 
     1989-1999 -0.164* -0.181* 

             (* significant at the 95% confidence level) 
 
 
 
 
Table 8.5: Correlations between 1969 income levels and income growth rates between 
1969 and 1999 
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Figure 8.9: OLS regression between 1969 logarithmic per capital personal income and 
annual income growth rate across the US LMAs, 1969-1999 
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is –0.010 and R-squared is 0.231 (Table 8.1).  Therefore, β-coefficient for the US LMAs 

over 30 years is .010 that means that US regional income has converged at a speed of 1% 

annually.  This is too low to conform to the myth of 2% convergence and the exploratory 

power is rather low.  Further, the trend towards income convergence varies sub-period to 

sub-period.  Table 8.6 lists different β-coefficients for different sub-periods: 0.022 for 

1969-1979, 0.012 for 1979-1989, and 0.005 for 1989-1999.  Obviously, the thesis of 

income convergence works best for the 1970s and worst for the 1990s.  1989 income 

levels only explain 3% of total variance in income growth rates.  It thus should be 

concluded that there has been no β-convergence since the earl 1980s. 

 As discussed, presence of spatial autocorrelation in OLS residuals may invalidate 

significance of regression coefficients.  Table 8.6 shows that Moran’s I tests find a 

significant spatial autocorrelation in OLS residuals for all sub-periods.  This necessitates 

use of spatial autoregressive models.  Here, I utilize SAR (simultaneous autoregressive) 

model.  Following Tiefelsdorf’s notation (2000:43-44), a SAR model is written: 

 

  and ε , therefore, εXβy += ηVε += ρ

{ { {
noisesignalTrend

ηVεXβy ++= ρ         (8.1) 

 

where ε is the correlated error term and η is a random white noise.  From (8.1), variation 

of a dependent variable is decomposed into three parts, respectively what Haining 

(1990:258-259) calls trend, signal, and noise.  If there is no spatial autocorrelation, ρ, 

spatial autocorrelation coefficient, will be zero, thus, variance of a dependent variable is  
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decomposed into vectors of predicted values and non-correlated errors.  Table 8.6 reports 

that ρ-coefficient for all sub-periods is not negligible, and is highest in 1979-1989.  By 

applying ε  to the equation, we have: Xβy −=

 

ηVXβVyXβy +−+= ρρ        (8.2) 

 

This equation allows a further decomposition (Tiefelsdorf 2000:44): (i) the spatially 

independent influences of the exogenous component ; (ii) the spatially dependent 

endogenous observations ; (iii) the spatial trend values ; (iv) independent 

disturbances .  Further, the variance-covariance matrix Ω(ρ) among the error terms can 

be written (Tiefelsdorf 2000:44): 

Xβ

Vyρ VXβρ

η
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 Figure 8.10 show spatial patterns of decomposition of income growth raters 

between 1969 and 1999 based on equation 8.1.  What a SAR model does is to decompose 

residuals into spatial autocorrelated errors (signal) and non-autocorrelated ones (noise).  

The signal map in Figure 8.10 shows that positive residuals are spatially clustered in the 

South.  By eliminating spatially autocorrelated parts from residuals, the noise map rarely 

displays spatial autocorrelation.  Moran’s I test for noise resulting from SAR models in 

Table 8.6 does not reject the null hypothesis that there is no spatial dependence in 

residuals.  A crucial finding is that SAR models significantly lower t-values of β-

coefficients.  Even though all the β-coefficients in OLS models are significant at the 99% 

confidence level, the SAR counterparts are not except for one in the 1969-1979 model.  

This implies, as Bailey and Gatrell (1995:285) indicates, that OLS models tend to inflate 

the significance of regression coefficients.  Thus, an ultimate conclusion is that there is  
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no statistical evidence of regional income convergence in the US over the last three 

decades. 

 

8.3.6 Spatial heterogeneity in β-convergence 

It is noteworthy that the negative relationship between initial income levels and 

income growth rates should not be assumed to apply to an entire study region.  The 

relationship may be positive for some locales; some characterized by lower-than-average 

1969 income level and lower-than-average income growth rater during 1969-1999; others 

in an opposite direction.   

Figure 8.11 utilize local-r and local-L scatterplot maps.  The latter is simply a 

spatially smoothed version of the former, which may benefit pattern detection.  From 

Figure 8.11-(a), one can notice that urban effects are dominant for high-high association.  

They started at a higher-than-average income level in 1969 and have enjoyed a higher-

than-average income growth during the last 30 years.  Figure 8.11-(b) may help 

generalize spatial patterns.  Areas with the higher-than-average income level in 1969 are 

associated with lower-than-average growth rate between 1969-1999.  In contrast, areas 

with lower-than-average income level in 1969 are associated with higher-than-average 

growth rate.  When Figure 8.11-(b) is compared to Figure 8.5-(a), it is revealed that there 

is a structural distinction among areas characterized by the continuation of lower income 

levels; areas from the Mountain region down to the western Texas are discernable from 

ones in the South and the northwestern part of the Midwest; the former has never been 

involved in the catch-up process; the latter has positively contributed to the catch-up 

scenario.   

 175 



��������	
���������	������

��������	
���������	������

��� � ��� ��� ��	�
�	����

����������	�������
�������
����������	�������
��������
�����������	�������
�������
�����������	�������
�������

 
 
 
 
Figure 8.11: Local-r and local-L scatterplot maps of 1969 logarithmic per capita personal 
income and income growth rate, 1969-1999 
 

 176 



Figure 8.12 show local-L significance maps for all years and three sub-periods.  

The map for 1969-1999 selects LMAs from Figure 8.11-(b) that are significant.  Some 

interesting patterns are detected.  First, the northern part of the Megalopolis, southern 

Florida, and Denver areas have significantly built on their initial higher-than-average 

income level.  Second, economic slowdowns have mostly occurred in the Midwest and 

the Pacific.  Third, most areas in the South except for several urban centers in the 

Pediment turn out to be significant spatial clusters for the β-convergence; that is, they 

conform to the ‘catch-up’ scenario. 

 Sub-periods, however, contains particular spatial heterogeneity in β-convergence.  

In the 1970s, deindustrialization in the traditional industrial belt or rust belt and 

industrialization in the South centered on the lower Mississippi dominated.  The 1980s 

experienced re-orientation towards the Megalopolis and southern Florida, marked 

deindustrialization in the Pacific, and economic slowdowns in the Great Plain, and 

economic upswings in the South centered on the Pediment.  Finally, the 1990s is 

characterized by economic slowdowns in the Megalopolis, the California region, and 

southern Florida, and economic revitalization in the South centered on the lower 

Mississippi. 
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CHAPTER 9 

 

 

CONCLUSIONS 

 

 

9.1 Summary of findings 

 

This study aimed to develop a new set of spatial association measures (SAMs), to 

provide generalized significance testing methods, to propose a set of ESDA techniques 

using the developed SAMs, and finally to illustrate the rationales and usefulness of the 

proposed ESDA techniques by applying the methods to a study on spatio-temporal 

dynamics of the regional income distribution across the US labor market areas. 

In Chapter 2, I attempted to elaborate an ESDA-GIS framework based on SAMs.  

The nature of spatial data was discussed on three concepts; spatial scale, spatial 

dependence, and spatial heterogeneity.  Statistical results largely depend on what spatial 

units are used in a research.  Various effects of the modifiable areal unit problem 

(MAUP) have crucial impacts on the understanding of the reality and dictate research 

results to a large extent.  The presence of spatial dependence often erodes the validity of 

uniform statistical inferences such that statistical judgments are often flawed.  Since 
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spatial patterns often display distinctive spatial sub-regions or spatial regimes each of 

which has distinctive properties of a variable or distinctive associations of variables.  

Further, some techniques should be devised to allow an overall parameter of a set of 

parameters to be decomposed into spatially drifting local parameters.  Significance 

testing for SAMs should be based on a generalized framework that various SAMs, 

whether univariate or bivariate, whether global or local, or spatial weights matrices with 

zero-diagonal or non-zero diagonal, are commonly predicated on.  A well-founded 

significance testing is necessary for ESDA, mainly because a pattern detection using 

SAMs will be theoretically more meaningful and practically more efficient.  An ESDA-

GIS framework is defined as a GIS-based research platform equipped with various ESDA 

techniques.  Developments of the ESDA-GIS framework are strongly connected to the 

emergence of GIS as a general purpose platform for spatial data analysis.  An ESDA-GIS 

framework based on SAMs is characterized by a continuous mutual interaction between 

GIS and ESDA.  A GIS takes advantage of ESDA’s computational efficiency and ESDA 

takes advantage of GIS’s visualization capabilities.   

 In Chapter 3, rationales for a univariate SAM were first discussed.  A global 

univariate SAM parameterizes the univariate spatial dependence or captures the level of 

spatial clustering.  A local univariate SAM gauges an observation’s relative contribution 

to the corresponding global trend.  A new set of global and local univariate SAMs, S and 

Si, were developed.  S, spatial smoothing scalar, captures the degree of spatial smoothing 

when a variable is transformed to its spatial moving average vector.  If a spatial pattern is 

more spatially clustered, it is given a higher value of S.  It was argued that local Si has 
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some advantages over other local univariate SAMs such as local Moran’s Ii and local 

Geary’s ci, because it less depends upon an reference area and still works effective in 

detecting spatial clusters.   

In Chapter 4, needs for a bivariate SAM were discussed by elaborating on a 

conceptual decomposition of association into the pairwise point-to-point association and 

the univariate spatial associations.  Thus, a global bivariate SAM captures the spatial co-

patterning by simultaneously gauging the two types of association.  L was defined as an 

adjusted Pearson’s correlation coefficient between spatial moving averages drawn from 

the original variables scaled by the square root of the bivariate spatial smoothing scalar 

that is the product of univariate spatial smoothing scalars.  Local Li was justified as a 

spatially varying correlation or localized correlation.  Under the presence of the bivariate 

spatial dependence, neighboring locations tend to retain similar covariances, and thus a 

set of local Pearson’s ri should display a spatial clustering when it is mapped.  Therefore, 

local Lis can be seen as spatially smoothed local correlations.   

In Chapter 5, a generalized significance testing method based on the normality 

assumption was presented.  When a SAM is defined as ratio of quadratic forms, the 

preexisting algorithm can be utilized to compute first four moments.  I showed how all 

the univariate SAMs, whether global or local, can be transformed to ratio of quadratic 

forms and how the generalized procedure is customized for a particular SAM.   

In Chapter 6, a generalized significance testing method based on the randomization 

assumption was presented.  I showed that two general procedures, the Extended Mantel 

Test and the generalized vector randomization, can yield first two moments for the all the 
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SAMs, whether global or local or whether total or conditional randomization is assumed.  

I first provided a general procedure and then illustrated how a particular SAM is 

tailorized to fit to the procedure. 

In Chapter 7, I proposed a new set of ESDA techniques utilizing various SAMs and 

attempted to demonstrate their usefulness with a hypothetical data set.  For a univariate 

situation, local-S significance map and Geary significance map were proposed in 

comparison with the preexisting Moran scatterplot and Moran significance map.  For 

bivariate situations, local-r and local-L maps, local-r and local-L scatterplot, and local-r 

and local-L significance maps were proposed by.  A local-L scatterplot is obtained by 

utilizing two vectors of spatially smoothed z-scores.  Four quadrants in the scatterplot 

stand for different bivariate spatial associations.  The lower left and upper right quadrants 

indicate positive bivariate association, while the upper left and lower right quadrants 

indicate negative associations.  When areas are referenced by their quadrant locations, 

categorical maps can be created, local-L scatterplot map.  A local-L significance map is 

created by combining a local-L scatterplot map and a significance testing on local Lis 

themselves.  Areas showing up in a local-L scatterplot map may be conceptualized as 

bivariate hot spots or cold spots when they correspond to the global trend, and bivariate 

outliers when they are opposite to it.   

In Chapter 8, I analyzed the US annual regional income data from 1969 to 1999 in 

order to examine the regional income convergence hypothesis proposed by utilizing 

various ESDA techniques developed in Chapter 7.  LMAs (Labor Market Areas) along 

with other regionalization schemes are used as spatial units.  A series local-S significance 
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maps evidenced the presence of spatial dependence in the regional income distribution 

and showed a spatial disintegration within traditional spatial clusters.  Local-r and local-L 

maps between 1969 and 1999 regional income distributions revealed a significance level 

of heterogeneity across the US areas.  The notion of σ-convergence was not evidenced by 

the data set.  Rather, a general trend towards income divergence was detected since the 

late 1970s.  It was found that the temporal trends of coefficients of variation and Moran’s 

Is did not necessarily correspond to each other.   It was rather contemplated that, while a 

contagious spatial process tends to lead to a correspondence, a hierarchical spatial 

process tends to induce a discrepancy.  The hypothesis of β-convergence, which is 

defined as a negative relationship between an initial income level and a income growth 

rate, was partially evidenced, albeit contrasting figures for the 1990s.  A local-L 

scatterplot map and a local-L significance map showed that there was a substantive level 

of spatial heterogeneity in the catch-up process, and suggested possible spatial regimes.   

 

9.2 Future research agenda 

 

First, L measure can be extended to calibrate a spatial principal components 

analysis, which is expected to yield a set of spatially smoothed principal components 

scores as a multivariate SAM. 

Second, a way of computing higher moments for SAMs based on the 

randomization assumption should be obtained.  Since the sampling distributions of L and 

Li show significant levels of skewness and kurtosis, the inferential test based on the 

 183 



normal approximation with first two moments does not yield an accurate p-value.  In 

relation to it, an attempt to extend the generalized testing method based on the normality 

assumption to bivariate measures should be undertaken.   

Third, more empirical studies utilizing the ESDA techniques should be conducted.  

An instant application can be undertaken to compute local spatial segregation indices.  

Since residential segregation intrinsically involves a certain level of spatial clustering, a 

comparison between spatial distributions of two different racial/ethnic groups should 

embrace the bivariate spatial dependence.  While a global L provides a reliable measure 

for overall spatial exclusion between groups with a statistical test, local Li can capture a 

local degree of residential segregation.  Another field that may effectively utilize the 

approach could be a comparison between two raster-based layers such as remotely sensed 

imageries.  The utilization of local Li could provide a feasible way of conducting the 

bivariate image generalization by generating a spatially smoothed layer of 

correspondence/discrepancy between two layers. 

Fourth, the development of a full-fledged platform ESDA-GIS program should be 

undertaken.  Currently, GIS customization is easier than ever.  For example, ESRI’s 

ArcGIS finally reach the full realization of object-oriented GIS (Goodchild 2000; Marble 

2000).  Accordingly, ESRI’s MapObjects as a GIS development too and MicroSoft’s 

ActiveX technology collectively shed a fresh light on the development of ESDA/GIS 

interfaces, which virtually goes beyond current integrations such as S-Plus/ArcView and 

SpaceStat/ArcView. 
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This study orients itself to a broader field of geographical information sciences 

(GISc) where different disciplines interact with each other.  I would argue that 

quantitative geography or spatial data analysis in geography need to move into the new 

terrain with being equipped with various ESDA techniques.  This is based on a clear 

distinction between GISc and GIS.  Goodchild (1992:43-44) contends that “the handling 

of spatial information with GIS technology presents a range of intellectual and scientific 

challenges of much greater breadth than the phrase ‘spatial data handling’ implies—in 

fact, a geographical information science” and that “geographical information systems are 

a tool for geographical information science”.  Marble (2000:32) argues, echoing 

Goodchild, that “the recent rise of GISc as an integrative concept covering both GIS and 

spatial analysis certainly works in favor of a broadly based view of spatial analysis and 

places us in a better position to move rapidly and effectively towards a closer integration 

of GIS technology and spatial analysis.”  This conceptualization implies that we need to 

retreat much of the discipline’s intellectual resource from technical aspects of GIS and to 

bring it back to the implementation and sophistication of geographical inquiries with 

substantive research objectives in the GIS environment.  In this sense, the ESDA-GIS 

framework based on SAMs presented here could be a solution. 
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