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Abstract. This research is concerned with developing a bivariate spatial
association measure or spatial correlation coefficient, which is intended to
capture spatial association among observations in terms of their point-to-
point relationships across two spatial patterns. The need for parameteriza-
tion of the bivariate spatial dependence is precipitated by the realization that
aspatial bivariate association measures, such as Pearson’s correlation
coefficient, do not recognize spatial distributional aspects of data sets. This
study devises an L statistic by integrating Pearson’s r as an aspatial bivariate
association measure and Moran’s [ as a univariate spatial association
measure. The concept of a spatial smoothing scalar (SSS) plays a pivotal role
in this task.
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1 Introduction

The identification and measurement of the spatial clustering of a
geographical variable have been a focal issue in both confirmatory and
exploratory spatial data analyses. Global measures of spatial autocorrela-
tion, such as Moran’s I, provide summary statistics for overall spatial
clustering (Moran 1948; Geary 1954; Cliff and Ord 1981; Goodchild 1986;
Griffith 1987; Odland 1988). Corresponding local indices, such as local
Moran’s [;, allow researchers to explore local variations in spatial
dependence by measuring each area’s relative contribution to the corre-
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sponding global measure (Getis and Ord 1992; Ord and Getis 1995; Anselin
1995, 1996). These efforts are part of a broader endeavor to spatialize general
statistics by recognizing that regular statistical assumptions seldom hold for
spatial data. For example, data points in geographically referenced data sets
are not independent from one another due to spatial autocorrelation (spatial
dependence), and spatial distributions often display significant local
variations resulting in the presence of discrete spatial regimes within a study
area (spatial heterogeneity or nonstationarity) (Anselin 1988, 1990; Anselin
and Griffith 1988; Haining 1990; Anselin and Getis 1992; Getis and Ord
1996; Goodchild 1996; Fotheringham 1997; Fischer 1999).

Following on this spatial turn or ‘renaissance of spatial analysis’ (Unwin
1996, p. 541), the present study is concerned with developing a bivariate
spatial association measure. Whereas univariate spatial association measures
focus on the spatial clustering of observations in terms of a single variable, a
bivariate spatial association measure captures the relationship between two
variables, taking the topological relationship among observations into
account. In other words, it parameterizes the bivariate spatial dependence.
The need for a bivariate spatial association measure reflects that aspatial
measures, such as Pearson’s correlation coefficient (r), do not recognize the
spatial distributional aspects of data sets (Haining 1990, 1991). For example,
one can generate n! different pairs of spatial patterns from two variables
consisting of n observations with different values; the Pearson’s rs will be
identical among pairs, but the degree of visual correspondence will vary.
What differentiates the pairs of spatial patterns with an identical Pearson’s r
is the spatial dependence of bivariate correspondence. With respect to this,
Hubert et al. (1985) make a distinction between ‘point-to-point association’
(the relationship within a pair at each location) and ‘spatial association’ (the
relationship between distinct pairs across locations). This conceptual
decomposition of ‘association’ should be statistically reconciled by an
integrative measure. In short, a bivariate spatial association measure needs to
capture the spatial co-patterning by calibrating both numerical co-varying
(‘point-to-point association’) and spatial clustering (‘spatial association’).

In this paper, I first clarify the need for a bivariate spatial association
measure, which revolves around defining the concept of bivariate spatial
dependence. I demonstrate that a bivariate spatial association measure
should contain information on the univariate spatial association of both
variables in its equation. Second, I formulate the concept of a spatial
smoothing scalar (SSS) as representative of the univariate spatial association
by decomposing Moran’s 1. SSS is an element of the Moran’s I equation and
is defined as the degree of smoothing when a variable is transformed to its
spatial lag. Third, I develop a bivariate spatial association measure (L) that is
presented as a product of three elements: SSSs of two variables and Pearson’s
r between spatial lags of the variables. Fourth, I illustrate the computational
process and usefulness of the measure with a hypothetical data set. A
significance testing procedure is also discussed.

2 Parameterization of the bivariate spatial dependence

The concept of spatial dependence points to the propensity for nearby
locations to influence each other and to possess similar attributes (Anselin
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1988; Anselin and Griffith 1988; Anselin and Getis 1992). At the heart of
problems that spatial dependence may cause lies the loss of information that
each observation carries. When spatial dependence is present, the informa-
tion from observations is less than would have been obtained from
independent observations, because a certain amount of the information
carried by each observation is duplicated by other observations in the cluster
(Haining 1990, p. 40—41; Anselin 1990). This loss of information invalidates
most statistical tests, because it lowers the effective number of degrees of
freedom (Goodchild 1996, p. 244). For example, in the context of the OLS
regression, the presence of spatial autocorrelation causes misleading
significance tests and measures of fit (Anselin and Griffith 1988, p. 16;
Fotheringham and Rogerson 1993, p. 11). In the same vein, the significance
testing for Pearson’s correlation coefficient may be flawed when similar
associations are spatially clustered since the degree of freedom cannot be
calibrated by n — 2 (Bivand 1980; Richardson and Hémon 1981; Clifford and
Richardson 1985; Clifford et al. 1989; Haining 1991; Dutilleul 1993).

A numeric vector with n data points with different values can generate n!
different permutations or arrangements, each of which has a distinct order of
data points. When referenced by spatial locations, different orders of a
numeric vector result in different spatial patterns with different degrees of the
univariate spatial dependence or spatial clustering. To illustrate, I generate
three different spatial patterns from a numeric vector on a hypothetical space
consisting of 37 hexagons (Fig. 1). Since the spatial patterns are three out of
all possible 37!/(7!117'13!) geographical variables, they share the same
numerical properties: a mean of 1.838 and a variance of 0.514. Differences
in the univariate spatial dependence or spatial clustering among the three
patterns are parameterized by Moran’s I.

In the bivariate context, n! different pairs can be drawn from fwo numeric
vectors, when elements in each variable are all different (note that the
corresponding data points are bound in a permutation process). The n!
different pairs are identical to one another in terms of the point-to-point
association, e.g. Pearson’s r. Since data points are spatially indexed,
however, different pairs are characterized by different degrees of the bivariate
spatial dependence, thus different levels of spatial co-patterning are revealed.
To illustrate, three patterns in Fig. 1 are now seen as different variables, and
the three pairs, A-B, B-C, and C-A, show identical relationships in terms of
Pearson’s r (0.422). The association of A-B, however, shows a higher level of
bivariate spatial dependence or spatial co-patterning than those of B-C and
C-A: the association of A and B displays the highest level of spatial clustering
of hexagons sharing the same values between the two maps.

Having realized that a pair of variables under investigation represents only
a particular case of all possible bivariate spatial associations, one may wish
to devise a measure that effectively differentiates the associations by
integrating the two concepts of ‘association’. The importance of a conceptual
disintegration and computational reintegration of ‘point-to-point associa-
tion” and ‘spatial association’ can be clarified by two conceptual illustrations.
In the first example, a bivariate spatial association is seen as a Pearson’s r
between two sets of local Moran’s I;s. This illustrates that locations with an
identical value might be differently recognized in measuring a bivariate
association if their relations with neighboring locations are different.
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n: 37

Mean: 1.838
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Pearson’s r

(0.422)
Moran’s I: 0.386 Moran’s I: -0.186

Fig. 1. Three spatial realizations of a hypothetical numeric vector

The second conceptual illustration is provided by the global Moran’s 7 of
what can be termed local Pearson’s r;. A local Pearson’s r; captures the degree
of numerical correspondence between two values at a location, and is simply
calculated by multiplying two z-scores of the values, each of which is
standardized by the mean and standard deviation of each variable. The mean
value of local Pearson’s r;s is nothing but a global Pearson’s r. When local
Pearson’s r;s are mapped, a global Moran’s I captures the degree of spatial
dependence of point-to-point associations across locations. This provides a
conceptual foundation for a bivariate spatial association measure and
suggests that an integration of Moran’s [ as a univariate spatial association
measure and Pearson’s r as an aspatial bivariate association measure may
lead to a feasible measure. As can be seen from Fig. 1, the level of bivariate
spatial dependence is determined by the level of univariate spatial
dependence of variables involved when the point-to-point association is
held constant. This further suggests that a bivariate spatial association
measure should be a composite of three elements: wunivariate spatial
associations of two variables and their point-to-point association in a certain
form.
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Although the need for a bivariate spatial association measure has long been
recognized, the only comprehensive attempt to devise a parametric bivariate
spatial association measure is Wartenberg’s work (1985), which proposed a
matrix algebraic form for the bivariate Moran’s I intended to provide an
alternative correlation matrix for a spatial principal components analysis. His
measure has drawbacks, however, which will be discussed subsequently.

3 Decomposition of Moran’s I and formulation of spatial
smoothing scalar (SSS)

As demonstrated in the previous section, a certain form of measuring the
univariate spatial association should be derived to construct a bivariate
spatial association measure. I illustrate that it can be done by decomposing
the Moran’s I equation. Since both Pearson’s r and Moran’s [ are variants of
Mantel’s general cross-product association measure (Mantel 1967; Hubert
et al. 1981, 1985; Hubert and Golledge 1982), I begin with clarifying
computational similarities between Pearson’s correlation coefficient and
Moran’s I. Doing this involves: (i) rewriting the equation for Moran’s I using
the concept of spatial lag; (ii) decomposing the equation into two parts,
Pearson’s r between a variable and its spatial lag, and a spatial smoothing
scalar (SSS) of the variable; and (iii) proposing SSS as representative of the
univariate spatial association.

Pearson’s correlation coefficient (r) for variables X and Y is computed by:

i —=X) i =)

rxy = (1)
VI =22 - )
and, Moran’s [ is given by:
I no 35— %) (5 — %) 2)

- > Zj Cij Do (i — 3_5)2

where ¢;; is an element of a binary connectivity matrix (C) whose elements
have a value of 1 for contiguous spatial units and 0 for the others. Following
Griffith (1995) and Tiefelsdorf et al. (1999), I define W as a row-standardized
version of C (each element is divided by its row-sum). When W is applied, (2)
can be simplified to:

. > 2o wij(xi — X) (x; — %)
> (% — %)

The homology between Moran’s I and Pearson’s r is more obvious when the

former is rewritten by utilizing the concept of a spatial lag (SL), which is

composed of weighted averages of neighbors defined by the spatial weights
matrix (Anselin 1988; Anselin and Smirnov 1996), and is given as:

ii = Z]_ WiiX; (4)

Iy

3)
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where ¥; is an element of a spatial lag vector of X (X). By applying (4) to (3)
and restating the denominator of (3), we have

e w95
VS =02 (- %)

Since Moran’s I measures the relationship between observations and their
neighbors, it may be useful to address the substantive meaning of Moran’s
by comparing (5) and the equation for Pearson’s r between a variable (X) and
its SL (X), which is given by:

e = 2o (i —X) (% — X)
YO SN Y S

where ¥ denotes the mean of the SL vector of X. Here, a comparison of (5)
and (6) provides an important insight into a practical understanding of
Moran’s I. A major difference occurs in the right side of the denominator.
Since elements in SL can be seen as smoothed values of the original ones, the
variance of SL (given by the right side of the denominator in (6)) is always
smaller than that of the original values (given by the right side of the
denominator in (5)). In addition, the numerators in (5) and (6) are identical
because the difference between them is zero. Now, (5) can be rewritten in
terms of (6):

(5)

(6)

From (7), Moran’s [ is seen as a Pearson’s r between a variable and its SL
scaled by the square root of the ratio of the SL’s variance to the original
variable’s variance (or the ratio of the SL’s standard deviation to the original
variable’s standard deviation). This derivation corresponds to a well-known
finding that Moran’s I is a regression coefficient when a variable’s SL is
regressed on the original variable (Anselin 1995; Griffith and Amrhein 1997).
By utilizing the general relationship between a regression coefficient in a
bivariate regression and Pearson’s r between two variables, (7) is easily
proved.

The ratio of standard deviations can further be decomposed:

Iy

Since the means of the original variable and its SL are expected to be very
similar, a part of A in (8) is approximately 1. Further, there is virtually no
relation between A and ry 5, thus Moran’s I, allowing it to be regarded as a
random noise. Next, a ratio of two total sums of squares is defined as a
spatial smoothing scalar (SSS), which is approximately identical to the
variance ratio in (7), and is similar to what has been conceptualized as a
variance reducing factor in general smoothing techniques (Loader 1999: 7).
The SSS can be formulated in a general form:
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where v;; is an element in a general spatial weights matrix V. Note that, when
W is applied, (9) is reduced to the equation defined in (8). SSS is the degree of
smoothing of a geographical variable or spatial pattern when its observations
are represented by their corresponding elements in a SL in accordance with a
particular smoothing method.

Although an intensive investigation of relationships between the SSS and
spatial autocorrelation is beyond the scope of this paper, an initial
observation suggests that the SSS reveals substantive information about
the spatial clustering of a variable. If a variable is more spatially clustered, its
SSS is larger, because variance of the original vector is less reduced when it is
transformed to its SL. For example, the SSSs for the three spatial patterns
shown earlier are respectively 0.649, 0.418, and 0.175 (Fig. 2). The value of
0.649 for pattern A indicates that the variance of A’s SL is approximately
64.5% of that of the original A.

The decomposition of Moran’s I provides new insights into the univariate
spatial association. First, the SSS itself can be seen as a direction-free
univariate spatial association measure that theoretically ranges from 0 to 1.

SSSy =

©)

$SS, =0.649
r,; =0.848

1,=0.681=+0.649-0.848

B
SSS, =0.418
r,; =0.597 ®
1, =0.386=~0.418-0.597 o9
C C
b SSS, =0.175
® rp o =-0453

I.=-0.186=+0.175 (- 0.453)

Fig. 2. The relationship between the spatial smoothing scalar (SSS) and Moran’s /
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Second, the SSS is a crucial element in the Moran’s I equation. The other
element, Pearson’s r between a variable and its SL, remains a measure of
point-to-point association in the sense that very different associations
between an area and its neighbors could result in very similar or even
identical contributions to Pearson’s r, ;. For example, if two observations
have the same value and their neighbors’ (weighted) means are the same,
their spatial lag elements will be identical; thus their contributions to
Pearson’s r between a variable and its SL are identical. However, a
neighbors’ mean does not take variance among neighbors into account: one
observation could be surrounded by homogeneous neighbors; the other
could be connected to neighbors which are very different from one another.
The concept of a spatially varying variance or local instability in variance is as
important as that of a spatially varying average in defining a univariate
spatial pattern.

As a conclusion, the SSS should be utilized as a representative of the
univariate spatial association to obtain an equation for the bivariate spatial
association. In other words, the SSSs of two variables should define the
bivariate spatial association along with a certain form of Pearson’s
correlation coefficient between them, allowing the former to spatialize the
latter.

4 A bivariate spatial association measure (L)

4.1 Criteria for a bivariate spatial association measure and critiques
on Wartenberg’s formulation

By reference to findings in the previous section, two criteria can be suggested
for developing a bivariate spatial association measure. First, the measure
should conform to Pearson’s r between two variables in terms of direction
and magnitude to a certain extent. Although the measure has an exclusive
interest in the spatial association among observations, it should retain the
direction and magnitude of a point-to-point association between two
variables, which requires the inclusion of a certain form of Pearson’s
correlation between two variables. Second, a bivariate spatial association
measure should reflect the degrees of spatial autocorrelation for both
variables under investigation. In other words, it should respond to the
collective effect of the SSSs of the variables.

The most comprehensive attempt to develop a bivariate spatial association
measure by extending Moran’s 7 is Wartenberg’s work (1985). He developed
a bivariate Moran’s I following Mantel’s formulations.

T
= (10)
1'C1

where I is a variable-by-variable Moran correlation matrix, Z is a case-by-
variable matrix whose elements are z-scored, C is a case-by-case binary
connectivity matrix, and 1 is a case-by-1 column matrix with all elements
being 1s. The diagonal values of I are Moran’s I coefficients for the variables,
with each off-diagonal element being a bivariate Moran’s I (Griffith (1993,
1995) terms it Cross-MC (Moran coefficient)), which is similar to the cross-
correlation approach in geostatistics (Isaaks and Srivastava 1989).
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By decomposing the matrix and applying a row-standardized spatial
weights matrix, one can write an equation for an off-diagonal element in the
matrix I between two variables, X and Y:

Iey = 2. (i = X)(% — ) =~ \/SSSy 7y 5 (11)
VI =07 0 -

A comparison of (11) and (5) reveals that Wartenberg’s bivariate spatial
association measure, or bivariate Moran’s /, captures a bivariate association
between X and the SL of Y, and the association is scaled by square root of
the SSS for Y.

Using Wartenberg’s formula as a bivariate spatial association measure has
two obvious disadvantages that violates the two criteria established before.
First, it is conceptually untenable to allow a bivariate spatial association
measure to be primarily calibrated by the relationship between a variable and
the other variable’s SL. Moreover, a bivariate spatial association measure
should incorporate both SSSs of two variables in the equation, not just the
SSS of a variable. (11) also implies that Iy y and Iy x may be different when a
row-standardized spatial weights matrix is involved, which nullifies much of
Wartenberg’s attempt to formulate a spatial principal component analysis
using an I matrix in (10).

Second, Wartenberg’s equation is vulnerable to a reverse of the direction of
association. For example, when an area i with a higher-than-average value
for both X and Y are surrounded by lower-than-average values, the
numerator value in (11) could be given a negative value, because the SL of ¥
for the area is negative (the right part of the numerator), with the left part
being necessarily positive. A simulation observed that most of the
associations with negatively autocorrelated Y vectors were assigned negative
bivariate association indices. In conclusion, Cross-MC should not be used as
a bivariate spatial association measure.

4.2 A bivariate spatial association measure (L)
A bivariate spatial association measure (L) is defined as:

n . > [(Z/ vy (x; = 5‘)) : (Z/ v (v _)7))]
> (S0) VE w27 - 9)

and, when a row-standardized spatial weights matrix (W) is applied, (12) is
simplified to:

Ly y :Zi KZjWU(Xj_X)) ] (ijij(yj_y)ﬂ (13)

VI =75 -

Further, when the SL operation is introduced, (13) is transformed to:

¢z (v — %) ¢z

(12)

Lyy=

Lyy=
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Note that ¥; and j; are elements for a location i in X’s and Y’s SL vectors (X
and Y). To decompose (14) as undertaken for the Moran’s [ equation, it is
compared to an equation for Pearson’s r between SLs, which is given as:

S E-DG-) s)

e \/Z (X —X) \/Z 0 =

Note that ¥ and y are mean values of the SL vectors. By utilizing (15), (14)
can be rewritten as:

LXY_\/ \/ R N L
Z Z )7 2 Zi ()Ei - x)z Zi ()7;' _)7)2 v

(X—x)- Z —J)

Wz[ (i~ ¢z

As in (8), the element of A is approximately 1, and the element of B will be
zero when either variable’s mean is identical to one of its SL, which is very
likely. Then L is redefined as:

LX,Y =V SSSX \V SSSY . r)?.,f’ = 4/ BSSSX,Y -l”)gj (17)

Now, L between two variables is calculated by multiplying Pearson’s
correlation coefficient between their SL vectors by the square root of the
product of their SSSs. The product of the SSSs may be termed the bivariate
spatial smoothing scalar (BSSS), differentiating it from the SSS or univariate
spatial smoothing scalar (USSS).

Further, a matrix algebraic form for L is provided, when variables are z-
transformed:

_Z'(V'V)Z
C1(Viv)

where L is a variable-by-variable bivariate spatial association matrix, Z is an
area-by-variable (z-scored) data matrix, and V is an area-by-area general
spatial weight matrix. Note that, when W is applied, the denominator is
reduced to n. A spatial correlation matrix driven by (18) can be furthered to
calibrate a spatial principal components analysis as seen from Wartenberg’s
attempt (1985).

In addition, it should be noted that the diagonal elements in matrix L have
a particular meaning. From Eq. (14), a diagonal element can be written as:

(18)

<2
Zi (xl x)2 (19)
> (i — %)
where Ly x is simply the SSS of X defined in (8) and (9). (19) allows a
transformation of (17):

Lxy =+/Lxx -\/Lyy 15y (20)
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A higher value in the diagonal of the matrix L implies a higher Moran’s I for
the variable, and results in a higher L index between the variable and other
variables, all other conditions being constant.

In summary, the L index as a bivariate spatial association measure is
largely determined by Pearson’s r between two SL vectors, which generates a
smoothed version of Pearson’s correlation coefficient between the original
variables. Pearson’s r between SLs, then, is scaled by a square root of BSSS
(or a product of univariate SSSs) of the variables, which suggests that L
captures not only the bivariate ‘point-to-point association’ between two
variables, but also the univariate spatial autocorrelation.

4.3 An illustration with a hypothetical data set

For the purpose of illustration, the three different spatial patterns, A, B, and
C in Fig. 1 and 2 are utilized (Table 1). A/, B’, and C’ are spatially rotated
versions of those patterns, such that the univariate spatial dependence of the
original patterns remain unchanged in terms of SSS and Moran’s /. From
Table 1, four things should be acknowledged.

First, the sign in Pearson’s r between two variables remains unchanged in
L as long as the sign of Pearson’s r between their SLs is given accordingly.
The only exception is found in the association of A-C’, where Pearson’s r
between the two patterns is positive (0.107), but one between their SLs is
negative (—0.240). One way of dealing with this problem may be to apply the
spatial moving average operation where the weighted mean of neighbors for
an area is computed with the area itself being included. This means that the
spatial weights matrix W as a row-standardized version of C is replaced by a
matrix of a row-standardized version of a modified C, where ¢; = 1.

Second, as seen in equation (19), L between two identical patterns does not
yield a value of 1, and the value changes between pairs of variables (compare
A-A, B-B, and C-C in Table 1). This provides a crucial insight into the
comparison between two spatial patterns. That is, the bivariate spatial
dependence between identical patterns is completely determined by the
univariate spatial dependence of the pattern.

Third, L differentiates different spatial associations with an identical
Pearson correlation coefficient. A-B, B-C, and C-A are identical in terms of
Pearson’s r (0.422); however, they have Ls respectively of 0.327, 0.154, and
0.214 (Table 1). This implies that L is largely determined by the SSSs of the
two variables involved when Pearson’s r is identical. Since a negative L
indicates a spatial discrepancy, a poorer spatial co-patterning should be
given a negative value with a larger amount. This is well illustrated by a
comparison between B-B’ and C-C’: Pearson’s correlation coefficients are
identical (—0.051), but the spatial discrepancy is much more obvious in B-B’,
which is reflected in L values (—0.162 and —0.024).

Fourth, L differentiates different spatial associations with identical SSSs
but different Pearson’s r, which can easily be acknowledged by comparing
A-A and A-A’, B-B and B-B’, and C-C and C-C’ in Table 1.

Comparing L values among different spatial patterns, one may recognize
that the L effectively measures similarity/dissimilarity among variables in
terms of bivariate associations and their spatial clustering. In computation,
the numerical point-to-point association is calibrated largely by Pearson’s r
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Table 1. L with different bivariate spatial associations

Sang-II Lee

o Pattern SSS Correlation .
Association X v X v rert Fyy Ly,
A-A % % 0.649 0.649 1.000 1.000 0.649
B-B % % 0.418 0.418 1.000 1.000 0.418
C-C (% @ 0.175 0.175 1.000 1.000 0.175
A-B % % 0.649 0.418 0.628 0.422 0.327
B-C % (% 0.418 0.175 0.577 0.422 0.154
C-A @ % 0.175 0.649 0.634 0.422 0.214
A-A' % % 0.649 0.649 -0.800 -0.472 -0.512
S
B-B' 0.418 0.418 -0.388 -0.051 -0.162
[

c-C (@ % 0.175 0.175 -0.185 -0.051 -0.024
AC' % % 0.649 0.175 | -0.240 0.107 | -0.074

According to equation (17), € = \/; . \/E -C.

between SL vectors, and the spatial association is recognized by the BSSS.
Thus, the two elements collectively capture the spatial co-patterning and
parameterize the bivariate spatial dependence.

In order to evaluate the usefulness of the L index with real data sets, it was
applied to an empirical study on spatio-temporal shifts in the female
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proportion in the labor force between 1970 and 1990 at the U.S. county level
(Brown et al. 2000). The study compared 1970 and 1990 patterns in terms of
the female proportion in the labor force, not only for the overall U.S., but
also for the Ohio River Valley (ORV) region as a microcosm. Pearson’s
correlation coefficients between the 1970 and 1990 maps are almost identical
between the overall U.S. and ORV (0.701 for the US and 0.705 for the ORYV).
L statistics, however, provides a value of 0.358 for the US and 0.251 for the
ORV. The difference indicates that the US displays a much higher level of
bivariate spatial dependence between 1970 and 1990 maps than ORV does.
In other words, spatial clustering of temporal continuities in counties is more
prevalent for the overall US than the ORYV region.

4.4 A note on the significance testing of L

It has been recognized that Moran’s I and Geary’s ¢ are special cases of
Mantel’s (1967) generalized cross-product association measure (Cliff and
Ord 1981; Hubert et al. 1981), and the associated generalized significance
testing method can be used for deriving distributional properties of those
indices (Cliff and Ord 1981; Upton and Fingleton 1985). Practically, when
two matrices in Mantel’s equation being properly defined for the measures,
equations for the first two moments of Mantel’s statistic (Mantel 1967; Cliff
and Ord 1981, p. 23, Eq. 1.44-1.46) bring exactly the same set of values as
one computed from commonly used equations based on the randomization
assumption (see Cliff and Ord 1981, p. 21, Eq. 1.37, 1.39 and 1.42).

By extending the Mantel’s generalized significance testing method as
presented by Heo and Gabriel (1998), equations for the expected value and
variance can be derived. The full discussion of the method is beyond the
scope of the current paper, and will be presented elsewhere (Lee 2001). Only
the equation for the expected value for L with a W is given here as:

tr(WIW) —
E(L) :M'VX,Y (21)
n—1
The equation gives an expected value of 0.0840 for the three associations
among A, B, and C patterns (note that they are derived from the same
numeric vector and the Pearson’s correlation coefficients among them are
identical).

Mantel’s test corresponds to a bound or conditional permutation
approach, which is to conduct a large number of permutations where two
values for each observation are tied to each other. All of the different
permutations, then, have the same point-to-point association (Pearson’s r)
but different BSSSs. Fig. 3 displays a simulated distribution of 10,000
different L measures. However, it should be noted, as Boots and Tiefelsdorf
(2000) demonstrate, that other tessellation systems rather than hexagons may
result in different distributional characteristics. The mean of 10,000
permutations in Fig. 3 is 0.0836, which is well approximated by (21).

The Pearson’s correlation coefficient of 0.422 is significant at the 99%
confidence level (p-value =0.009) according to the regular -test, which means
that all the three pairs are significantly correlated in terms of the point-to-
point association. Fig. 3 provides a platform on which to conduct a pseudo-
significance test for the measure. The three associations (A-B, B-C, and C-A)
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Fig. 3. Distributional properties of L based on a bound permutation approach (n = 37, 10,000
permutations)

are given two-tailed p-values of 0.0002, 0.0946, and 0.0080 respectively by
10,000 permutations. This indicates that B-C association is not significant at
the 95% confidence level, while the other associations are significant at the
99% confidence level. (It is generally known that 1000 permutations is a
reasonable minimum for a test at the 95% confidence level and 5000 at the
99% confidence level (Manly 1997: 83)).

5 Conclusions

This paper developed a bivariate spatial association measure (L) by
reference to Moran’s I and Pearson’s r. A well-designed bivariate spatial
association measure should capture the spatial co-patterning by collec-
tively gauging the point-to-point association between two variables and
the topological relationship among spatial entities. The concept of a
spatial smoothing scalar (SSS) was formulated by decomposing the
Moran’s I equation. A bivariate spatial association index (L) was defined
as an adjusted Pearson’s r between variables’ spatial lags drawn from the
original variables scaled by the square root of the bivariate spatial
smoothing scalar, which is the product of univariate spatial smoothing
scalars.

The L index makes several contributions to a substantive spatial data
analysis:

First, the index provides a complementary measure to Pearson’s
correlation coefficient, as it effectively captures how much bivariate
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associations are spatially clustered. In other words, the measure can be used
to parameterize the bivariate spatial dependence.

Second, a local bivariate spatial association measure can be easily derived
from the index as:

n- [0 wiy (g = %)) (2 wy (v — 7)) n-(Xi —x)0 —y)

\/Zi (o — 56)2\/2,» i — J7)2 - \/Zz (o — 56)2\/2,- i — J7)2
(22)

L=

A local L; first indicates the relative contribution an individual area makes to
the global L, and also captures an observation’s association with its
neighbors in terms of the point-to-point association between the two
variables. A spatial distribution of local L;s may allow researchers to explore
a bivariate spatial heterogeneity in the sense that it may reveal the local
instability in relationships between two variables.

Third, the L index can be employed to measure spatial segregation or
dissimilarity (e.g., Morrill 1991; Wong 1993; Wardorf 1993; Chakravorty
1996). Since indices of segregation or dissimilarity measure the extent to
which a spatial distribution of a racial/ethnic group is correspondent to that
of the other group, the bivariate spatial association measure may provide a
new insight into the understanding of the relative degree of spatial exclusion
between racial/ethnic groups.

Fourth, a matrix of indices for a set of variables can be used to spatialize
other multivariate statistical procedures, such as principal component
analysis (Wartenberg 1985; Griffith and Amrhein 1997, Chap. 6).

This study will be further developed by subsequent research. A
corresponding local version and associated graphic and mapping techniques,
similar to a Moran scatterplot (Anselin 1996), will be elaborated. In addition,
important inferential properties for the global measure, including signifi-
cance testing, will be examined, as for Moran’s I (Terui and Kikuchi 1994;
Tiefelsdorf and Boots 1995, 1997; Hepple 1998; Tiefelsdorf 1998).
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