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A Spatial Statistical Approach to Migration Studies :
Exploring the Spatial Heterogeneity in Place-Specific

Distance Parameters

Sang-1l Lee*

This study is concerned with providing a reliable procedure of calibrating a set of place-
specific distance parameters and with applying it to U.S. inter-State migration flows between
1985 and 1990. It attempts to conform to recent advances in quantitative geography that are
characterized by an integration of ESDA(exploratory spatial data analysis) and local statistics.
ESDA aims to detect the spatial clustering and heterogeneity by visualizing and exploring
spatial patterns. A local statistic is defined as a statistically processed value given to each
location as opposed to a global statistic that only captures an average trend across a whole
study region. Whereas a global distance parameter estimates an averaged level of the friction of
distance, place-specific distance parameters calibrate spatially varying effects of distance. It is
presented that a Poisson regression with an adequately specified design matrix yields a set of
either origin-or destination-specific distance parameters. A case study demonstrates that the
proposed model is a reliable device of measuring a spatial dimension of migration, and that
place-specific distance parameters are spatially heterogeneous as well as spatially clustered.

Key Words : place-specific distance parameters, migration, Poisson regression, ESDA, local
statistics

1. Introduction

It has been one of the most fundamental
geographical inquiries to provide reasonable
explanations on ‘flows' or ‘movement’ over space.
The concept of spatial movement has been a
pivotal conceptual construct in the sense not only
that it allows geographers to formulate ‘relative
space’ apart from ‘absolute space’ (Haynes and
Fotheringham, 1984, 9), but also that it facilitates

a spatial perspective on human behaviors by
appropriating ‘relation’ with ‘distance’ (Gatrell,
1983), or by placing ‘distance’ over ‘interaction’
as its explanan. A collective set of quantitative
approaches to spatial movements has been
termed spatial interaction models (Fotheringham
and O'Kelly, 1989). It is obvious that migration
studies have played a pivotal role in the
development and dissemination of the spatial
interaction models.
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Recent developments in quantitative geography
have imposed tremendous impacts on spatial
interaction models. The proliferation of spatial
statistics and the advent and developments of
GIS (Geographical Information Systems) as a
general research platform have increasingly led
to fundamental restructuring in quantitative
geography (Fotheringham, et al, 2000). This new
trend can be characterized by the integration
between ESDA (Exploratory Spatial Data Analysis)
and local statistics. ESDA is an extension of
EDA (Exploratory Data Analysis) in general
statistics and its ultimate objectives are to to
describe and visualize spatial distributions,
identify atypical locations or spatial outliers,
discover patterns of spatial association, clusters
or hot spots, and suggest spatial regimes or
other forms of spatial heterogeneity (Anselin,
19%4; 1998). This definition of ESDA effectively
differentiates it from CSDA (Confirmatory Spatial
Data Analysis) which characterizes much of the
traditional quantitative geography and whose
main goal is to fest hypotheses, not to formulate
them (Haining, 1990).

A Jocal statistic is a statistically processed
value assigned to each spatial unit in a whole
study region. Unlike a global statistic that
intrinsically captures an average trend for the
entire region, a local statistic calibrates a
place-specific deviate from the average trend.
For example, a regression equation or a
coefficient of determination derived from a
regression is a global statistic, but another
bi-product, a regression residual, is a local
statistic.”! In this sense, local statistics play a
crucial role in the development of ESDA. When
local statistics are visualized, a researcher is
allowed not only to explore how a particular
locale is deviated from a global trend, but also to
identify spatial regimes that are spatial clusters
of similar deviates (Anselin, 1995, 1998, 1999

Bao and Henry, 1996; Getis and Ord, 199%;
Fotheringham, 1997, 2000; Fotheringham and
Brunsdon, 199%; Unwin and Unwin, 1998). For
example, albeit a positive correlation between two
variables according to Pearsons correlation
coefficient as a global statistic, some areas could
show negative correlations and those areas
further could be spatially clustered (Lee, 2001).

This new trend in quantitative geography
provides spatial interactions models or more
specifically migration studies with a fresh insight
into the understanding of spatial movements.
From primitive gravity models to more
sophisticated entropy-maximizing models, most of
the spatial interaction models are global in
nature”? For example, a distance parameter
calibrated by those models is nothing but an
average trend and it does not offer any insight
into spatially varying effects of distance in
migration magnitude. Thus, the main objectives
of this paper are to present the procedure of
extracting place-specific distance parameters in a
migration model and to demonstrate its
usefulness in exploring the spatial heterogeneity
of distance-decay effects with a real data set.
Subsequently, I first present the Poisson
regression as an alternative to gravity models
and entropy-maximizing models. Secondly, a
procedure of extracting place-specific distance
parameters by means of the Poisson regression
is presented. Thirdly, the usefulness and
practicability of the procedure is discussed by
applying it to an empirical data set of migration
flows among 48 US. States between 1985 and
1990.

2. Calibration of Place-Specific
Distance Parameters using a
Poisson Regression
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1) Limitations of gravity and entropy-maximizing
models

A spatial interaction model is interested in
models of the form :

Yy =ty + e §)
where Y5 is an observed spatial interaction

between { and j, % is an estimated spatial
interaction, and €4 is an error term. Thus,
spatiel  interaction models aim to develop a
reliable way of calibrating 4. A primitive form

of the gravity model can be written as:

PP/
d7 @)

#u ::k

where £ and ©i
origin i and a destination j, and % is a distance
between two locations. A usual way to estimate
parameters (@, #, and 7) is to take a
logarithm for the whole equation (2). Then we
have

are total population in an

n(¥, )= In(k)+ aIn(P)+ yIn(P,)- pinld, )+ &, (3,

Classical examples of applying equation (3) to
migration studies can be found in Clayton (1977)
and Flowerdew and Salt (1979). This procedure
has a crucial drawback, let alone a number of
conceptual and practical difficulties (see Senior,
1979). Obviously, equation (3) is a regression
equation based on the Ordinary Least Squares
(OLS} algorithm, which means that a log-normal
distribution of Yi is required (Flowerdew and
Aitkin, 1982). Such an assumption is not
sustainable since spatial flows are discrete counts
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whose variance is very likely to be proportional
to their mean value (Bailey and Gatrell, 1995,
353). As can be seen from the quadrat analysis
(Thomas, 1977), it is more reasonable and
statistically sounder to assume that counts of
events occurring in areas follow the Poisson
distribution. Second, there is no guarantee that
flows predicted by equation (3) satisfy three
constrains that are given respectively as :

(i) origin (production) constraint :

O =2t = 2%y
i J

4-1)
(it} destination (attraction) constraint :
D = o= N
! ,Z” ! .Zy 4 (4-2)
(ili) cost (impedance) constraint :
C=2Dnd;=33y,d,
i J i J (4—3)

The origin and destination constraints require
row-sums and column-sums in a predicted O-D
matrix of migration flows to be identical to ones
in an original O-D matnx, and the cost
constraint is defined accordingly. Along with
more sophisticated -gravity models (see Haynes
and Fotheringham, 1984), entropy-maximizing
models, however, meet these requirements.”

The entropy-maximizing model (Wilson, 1967
1970) is specified by maximizing the entropy
function, W, which is given by :

22
Rize G

W, ))=

By maximizing equation (5) with requirements in
(4) being conditioned, an optimal O-D matrix of
flows is derived. Now, a flow between { and j
locations is formally predicted by the equation :
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#H; = A,B,0,D, exp(—. ﬂd,j) )

where 4 and B/ are origin-related and
destination-related balancing factors, and their
values are estimated by the Lagrangian method.
Although the entropy-maximizing model is
conceptually sounder and practically more
accurate than traditional gravity models, it has
two crucial pitfalls. First, the model is a
predictive device rather than a explanatory one,
not only because it has been largely utilized in
the context of planning, but because the
specification itself tends to prevent itself from
adjusting to embrace more exploratory variables
(Flowerdew and Lovett, 1988). Second, it does
not provide any statistical tests on estimated
parameters, that is, whether they are statistically
significant or not. This may be even more
crucial when place-specific parameters are
visualized to identify significant spatial clusters.

) Poisson regression and a generalized spatial
interaction model

With few exceptions (Flowerdew and Atkin,
1982, Flowerdew and Lovett, 1988; Scholten and
van Wissen, 1985; Congdon, 1991; 1992; Flowerdew,
1991), Poisson regression models have rarely
been utilized to specify migration flows. The
problems discussed in connection with traditional
gravity models and entropy-maximizing models
can be solved by the Poisson regression or log-
linear model. The Poisson regression is a special
case of a class of GLM (Generalized Linear
Model) that represents a synthesis including
models such as linear regression, logit regression,
binomial regression, and Poisson regression.
When certain forms of population distributions in
dependent variables allow for a linear transfor-
mation of a regression equation by way of a link

function. When a linear transformation is done, a
maximum likelihood  algorithm yields a set of
unbiased parameter estimators by maximizing a
log-likelihood function (for more detailed
introduction to GLM, see Gill, 2001).

In the context of migration flows, a series of
derivatives for a log-likelihood function statistically
guarantee those requirements presented in (4).
Further, with the same set of variables, the
entropy-maximizing model and the Poisson
regression model vield an identical set of
parameters (Tiefelsdorf and Boots, 199%).
Without loss of generality, a general spatial
interaction model based on the Poisson regression
model is given by :

ln(,uy.)=,&+i?+if+ﬁdy.+z5ka -
k

where # is an estimator for a base migration

! 2D
flow, A and 4 are parameters related

respectively to the number of individuals at
origin { and the number at destination J, Xy
denotes K other covariates such as populatign
size at origin { or destination j, and O
is a kth variables coefficient. The specification
in (7) is called the augmented doubly constrained
spatial interaction (Upton and Fingleton, 1989,
142)* Tiefelsdorf and Boots (1995) effectively

l“(/‘n) 11010 d, p-p

ln(/IIZ) 11001 d, p-p A
ln(/‘u) 11000 d;, p-p ,"710
]n(/IZI) 101 10 dy pp 23
ln(.”zz) =1 0101 dyp pyp| P
ln(/’z:) 10100 dy; pp Alz)
l“(/‘zl) 1001 0 dy pp /é
l"(/‘sz) 10001 dy pyp, Sp ®
ln(/’ss) 1000 0 dy; psp,
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demonstrated how a doubly constrained spatial
interaction model with three areas is defined.
By slightly modifying it, we have equation(8)

Here, the matrix consisting of independent
variables usually called a design matrix Z should
be noted. The row length of the matrix presents
the number of all the cells in an O-D matrix.
The first column of the matrix is composed of
1s that is required to fit a regression model.
The second and third columns are dummy
variables for the first and second areas as
origins. It should be noted that zero is assigned
to cells for the third area in those columns, since
the area has been designated as a reference.
The third and fourth columns are dummy
variables for the first and second areas as
destinations. Again, cells for the third area are
given zero. The fifth column is a vector of
distances among areas. The entries in the last
column are products of origin population and
destination population. It is necessary because it
is impossible to put two columns simultaneously,
one for original population and the other for
destination population, due to a problem of
collinearity.

In practice, a vectorized observed migration
flows is set as a dependent variable and a
design matrix as seen in (8) is set as a bundle
of independent variables, a statistical package
generates a vector of parameter estimators, one
in the right side in (8). From this general
specification of spatial interaction models, one
may be able to define a particular specification
for a particular research topic. In the next
section, I will demonstrate how the general
specification is modified to calibrate place-specific
distance parameters.

3) Calibration of place-specific distance parameters

Although the notion of place-specific distance
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parameters have long been acknowledged, just a
little literature has been dedicated to visualization
and exploration of spatial patterns of the
parameters (Fotheringham, 1981, Stillwell, 1991;
Tiefelsdorf and Braun, 1997, 2000). Place-specific
distance parameters can be divided into two
categories: origin-specific distance parameters
and destination-specific distance parameters. In
the former, a large negative value for an area
suggests that outflows to nearby areas are
dominant from the area; in contrast, a small
negative value indicates the areas larger out-
migration field. In the latter, a larger negative
parameter in an area suggests that most of
inflows to the area are from nearby areas; in
contrast, a small negative parameter indicates the
areas larger spatial extension for attraction as a
migration destination. An origin-specific distance
parameters can be calibrated by the specification
as:

In4,) 11 0 4, 0 4, p

In(u,) 11 0 d, 0 d, p; i
In{zs;,) 1 0 d, 0 d, ps j10
In(ﬂzl) 10 1 0 dy dy p 13
ln(d”zz) =1 0 1 0 dy dy p;| ;&l
In(/"z:) 1o 1 0 dy dy p /éz
1“(/‘31) 1 -t -1 -d;, —-dy, dy, p 'éo
)| |1 -1 =1 -dy, -dy, dy p, A,? ©
I, ) 1 -1 -1 -dy -dy dy p,

From (9), one may notice that cell values for
the referenced area are given —1, not zero.
This kind of dummy specification is called the
centered coding scheme as opposed to the
cornered coding scheme. The centered coding
scheme is preferred mainly because all the
parameters can be intérpreted by reference to
overall average trend, not to the referenced area.
For example, # is an overall distance-decay
parameter in the centered coding scheme, not the
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origin-specific distance—glecay parameter for the
third area such that A is the distance-decay
parameter for the first area relative to the overall
distance parameter, not relative to the third area.
Thus, the actual origin-specific distance-decay
parameters are computed by :

B =P+ A, (10)
Further, parameters for the referenced area
which are not directly estimated should be
computed by :

=V

’ Z ' (11-1)

=20 (11-2)

A destination-specific distance-decay parameter
can be calibrated by the specification as :

ln(/‘n } 11 0 4, 0 dy p

()| 110 1 0 d, d, p|[4

In(zz, ) b -1 -1 ~d, -d;, d; p 210

(e, ) L1 0 4, 0 4, p, 'ilz)

ln(ﬂzz ’ =l 0 1 0 dy, dy py| /81

ln(/‘:: ) 1 -1 -1 -dy, -d, dy, p, /&z
In(/‘s]) 110 dy 0 4, p /&D
In(uy)| |10 1 0 d, dy p, 3,,0 (12)
‘n(ﬂ:s:' 1 -t -1 -dy, -d, d,, p,

When compared to (9), destination dummy and
distance vectors replace origin ones, and a vector
of origin population replace one of destination
population. Following (10) and (11),

B =5+, 13-
Py

; ! (13-2)
bi=20 (13-3)

3. An Application to U.S. Migration Data
1) Data and spatial units

The data set consists of migration flows
among 48 states (plus Washington D.C.) in the
continental U.S. The data set has been obtained
from the 1985 residency information registered by
county in the 1990 U.S. Census” This data set
does not include immigration flows and the
author eliminated migration flows from and to
Alaska and Hawaii.

Figure 1 shows the spatial distribution of net
migration. Since a pure intra-continental
migration flows are concerned here, the pattern
may not correspond to population growth pattern.
Whereas the first two classes in the map
indicate migration-lose, the last two classes
suggest the prevalence of in-migration over
out-migration. As commonly described, areas of
migration-gain are concentrated on what has
been called sun-belt regions and along both
coastal lines, and areas of migration-lose are
found in the traditional core regions including the
Northeast and Midwest regions, and the Great
Plain region. Figure 2-a and 2-b respectively
show the spatial pattern of in- and out-migration.
Those maps convey additional information about
migration flows. For exampe, the low net-
migration in the traditional industrial core region
and the Texas region is associated with high
in-migration but excessively high out-migration.

2) The spatial heterogeneity of place-specific
distance parameters

The specification in (9) has been used to
calibrate origin-specific distance parameters. A
vector of (4&1’/\ w&n) has been mapped (Figure
3-a). Although actual distance parameters for
States are computed by equation (10), the
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Persons
< -100000
30?888600 300 0 300 800 Mites
- o ]
> 100000
Figure 1, Net-Migration in U.S. States, 1985~ 1990
original parameters convey more intuitive can be calibrated by the specification in (12).

information. If a locale follows the global trend,
the parameter at the location will be zero.
Further, positive values indicate that migrants
from the area tend to take longer migration trips;
in contrast, in areas with negative values, people
move out under more pronounced distance-
friction. The global distance parameter is
calibrated at —0.140 (the original parameter was
multiplied by 100), which means that, at each
100-mile increase, migration flows decrease by
13.06%; when other conditions being held
constent” If an areas distance parameter is 0.05
in Figure 2-a, out-migrants from the area
experience the friction of distance only at a rate
of 861% per 100 miles.

A et of destination-specific distance parameters

Again, parameters originally esumated by a
Poisson regression are preferred to actual ones
calculated by equation (13-1). If an area has a
positive parameter, it is implied that migrants
into the area tend to take longer trips. In other
words, those areas can be said to have larger
migration fields, and thus may possess cities
with higher ranks in a national urban hierarchy.
On the contrary, migrants to areas with negative
parameters tend to be originated from nearby
states.

From Figure 3, one may recognize how much
a single trend measure for distance-effects in
migration distorts what has happened in reality.
In short, distance parameters in migration
phenomena are spatially heterogeneous. People in
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(a) In-Migration

Migranis

[} < 200000

[ ] 200000 - 400000
400000 - 600000
> 800000

300 [¢] 300 600 Mites
1

(b) Out-Migration

Figure 2. In-Migration and Out-Migration in U.S. States, 1985~1990
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{(a) Origin-Specific

Distance Parameters

300 ) 300 600 Miles [ _]<-0.05
i

0-0.05

>0.05

i -0.05-0

{b) Destination-Specific

Figure 3. Place-Specific Distance Parameters in U.S. States
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some areas have been more influenced by the
friction of distance in their migration decisions
than those in other areas. Conversely, some
areas impose different level of the friction of
distance on migrants from other areas in their
decision on spatial movements to the area than
other areas. In addition, distance parameters in
migration are spatially clustered. Areas possessing
locational  similarities tend to show similar
parameters. Out-migrants from a cluster of areas
tend 10 behave similarly in their decision on
spatial search; a cluster of areas tend to impose
similar level of the friction of distance on people
moving out of other areas.

Two spatial pattems in Figure 3 are very
similar, which means that areas attracting longer
-trip in-migrants tend to emit longer-trip out-
migrarts, and vice versa. This indicates that
there is a strong tie between spatial extents of
attractivity and  emissivity in  migration
phenomenon. However, it should be noted that
the spatial extent of attractivity does not
necessarily relate to the number of in-migrations.
Actually, the simple correlation between
destination—specific distance parameters (Figure
3-b) and the number of in-migrants (Figure 2-a)
is 047. For example, California, Florida, and
Texas attracted more than a million migrants
between 1985 and 1990 (see Figure 2-a). While
both California and Florida show positive
parameters, Texas is given a negative value,
which indicates that in-migrants to Texas tend
to be originated from nearby States. An opposite
example is seen in Nevada and Oregon, where
relatively small number of migrants to those
States came from relatively distant parts of the
us.

In accordance, the spatial emissivity is not
necessarily  associated with the number of
out-migrants. A correlation coefficient between
origin—specific distance parameters (Figure 3-a)

.

and the number of out-migrants (Figure 2-b) is
046. For example, Colorado and Oklahoma
emitted similar number of migrants (about
500,000), but they belong to opposite classes in
terms of origin-specific distance parameters: 0.06
for Colorado and 0.06 for Oklahoma. This implies
that, whereas out-migrants from Colorado tend
to scafter throughout the country, out-migrants
from Oklahoma tend to confine their destinations
to nearby States.

One may observe that maps in Figure (3) are
more spatially clustered than those in Figure (2).
This means that areas with similar locational
properties behave more correspondingly in spatial
extents of migration than the amount of
migration. Furthermore, spatial heterogeneity is
also more pronounced in Figure (3) such that at
least three distinctive spatial regimes are easily
defined; say, the West, the Middle, and the East.

4. Conclusions

This paper aimed at providing a way of
exploring the spatial heterogeneity in migration
studies. A Poisson regression model was
proposed to calibrate place-specific distance
parameters in migration flows. The case study
on U.S. inter-state migration flows between 1985
and 1990 demonstrates that the proposed model
is a reliable device of measuring a spatial
dimension of migration. In addition, map patterns
with calibrated place-specific distance parameters
evidenced that those parameters are spatially
heterogeneous as well as spatially clustered.

As Fotheringham (2000) correctly point out, it
is irony that, albeit a strong tradition of areal
differentiation, quantitative geography has focused
on spatial similarities rather than spatial
differences, global generalities rather than local
exceptions, and whole-map values rather than
mappable statistics. Spatial interaction models,
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more specifically, migration models, should follow
recent transitions occurring in overall geographic
information sciences, that is, integration of ESDA
(exploratory spatial data analysis) and local
statistics. By decomposing intrinsically aspatial
global statistics into place-specific or context-
dependent local statistics, migration studies will
gain more spatially saturated insights into
migration phenomena.

Notes

1) It should be noted that one may need to make a
clear distinction between a spatial local statistic
and a psudo-spatial local statistic. The former is a
value derived from a statistical computation with
topological relationships among observations being
taken into account, but the latter is a value simply
assigned to an area. In this sense, a regression
residual or a factor score is a psudo-spatial local
statistics. Obviously, local spatial association
measures belong to the category of spatial local
statistics.

Earlier exceptions include Fotheringham (1981) and

Ingram (1984).

A practical difference between more sophisticated

gravity models and the entropy-maximizing model

lies in how to estimate parameters. The former is

based on an iterative procedure (Senior, 1979,

Fig.3, 190) and the latter utilizes the Lagrangian

multipliers. In general, the latter is superior to the

former in terms of goodness—of-fit (Flowerdew

and Lovett, 1983).

4) When the K-covariates are dropped from equation
(7), the model becomes the doubly constrained
model. Wheni? or ,lj’ is dropped, it becomes a
destination-constrained (or attraction-constrained)
spatial interaction model or an origin-constrained
(or production—constrained) spatial interaction model.

5) More information about the data set can be found
at http://www.census.gov/population/socdemo/
migration/90mig.txt

6) The figure is computed by 100 % (1 —e"t )

2

=
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